Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs

Michael J. Glotter Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois

Search for other papers by Michael J. Glotter in
Current site
Google Scholar
PubMed
Close
,
Elisabeth J. Moyer Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois

Search for other papers by Elisabeth J. Moyer in
Current site
Google Scholar
PubMed
Close
,
Alex C. Ruane NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Alex C. Ruane in
Current site
Google Scholar
PubMed
Close
, and
Joshua W. Elliott Computation Institute, The University of Chicago, Chicago, Illinois

Search for other papers by Joshua W. Elliott in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources—reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset—and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0120.s1.

Corresponding author address: Michael J. Glotter, Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: glotter@uchicago.edu

Abstract

Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources—reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset—and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0120.s1.

Corresponding author address: Michael J. Glotter, Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: glotter@uchicago.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.94 MB)
Save
  • Asseng, S., and Coauthors, 2013: Uncertainty in simulating wheat yields under climate change. Nat. Climate Change, 3, 827832, doi:10.1038/nclimate1916.

    • Search Google Scholar
    • Export Citation
  • Asseng, S., and Coauthors, 2015: Rising temperatures reduce global wheat production. Nat. Climate Change, 5, 143147, doi:10.1038/nclimate2470.

    • Search Google Scholar
    • Export Citation
  • Bassu, S., and Coauthors, 2014: How do various maize crop models vary in their responses to climate change factors? Global Change Biol., 20, 23012320, doi:10.1111/gcb.12520.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. Sultan, and N. de Noblet-Ducoudré, 2010: What are the dominant features of rainfall leading to realistic large-scale crop yield simulations in West Africa? Geophys. Res. Lett., 37, L05405, doi:10.1029/2009GL041923.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., D. Mocko, J. O. Roads, and A. Ruane, 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912934, doi:10.1175/2009JHM1090.1.

    • Search Google Scholar
    • Export Citation
  • Challinor, A., T. Wheeler, J. Slingo, P. Craufurd, and D. Grimes, 2005: Simulation of crop yields using ERA-40: Limits to skill and nonstationarity in weather-yield relationships. J. Appl. Meteor., 44, 516531, doi:10.1175/JAM2212.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Wit, A., and Coauthors, 2010: Using ERA-INTERIM for regional crop yield forecasting in Europe. Climate Res., 44, 4153, doi:10.3354/cr00872.

    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., K. M. Willett, P. W. Thorne, E. V. Woolley, I. Durre, A. Dai, D. E. Parker, and R. E. Vose, 2012: HadISD: A quality controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Climate Past, 8, 16491679, doi:10.5194/cp-8-1649-2012.

    • Search Google Scholar
    • Export Citation
  • Elliott, J., and Coauthors, 2013: Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling. RDCEP Working Paper 13-01, 8 pp., doi:10.2139/ssrn.2222269.

  • Elliott, J., D. Kelly, J. Chryssanthacopoulos, M. Glotter, K. Jhunjhnuwala, N. Best, M. Wilde, and I. Foster, 2014: The parallel system for integrating impact models and sectors (pSIMS). Environ. Modell. Software, 62, 509516, doi:10.1016/j.envsoft.2014.04.008.

    • Search Google Scholar
    • Export Citation
  • Elliott, J., and Coauthors, 2015: The Global Gridded Crop Model Intercomparison (GGCMI): Data and modeling protocol for phase 1 (v1.0). Geosci. Model Dev., 8, 261277, doi:10.5194/gmd-8-261-2015.

    • Search Google Scholar
    • Export Citation
  • Elmore, R. W., and S. E. Taylor, 2013: Analog years for weather forecasting and correlating corn planting dates with yield in Iowa. Iowa State University Extension, Integrated Crop Management News. [Available online at http://crops.extension.iastate.edu/cropnews/2013/05/analog-years-weather-forecasting-and-correlating-corn-planting-dates-yield-iowa.]

  • Ensor, L. A., and S. M. Robeson, 2008: Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets. J. Appl. Meteor. Climatol., 47, 24682476, doi:10.1175/2008JAMC1757.1.

    • Search Google Scholar
    • Export Citation
  • Ewert, F., and Coauthors, 2015: Uncertainties in scaling-up crop models for large-area climate change impact assessments. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, C. Rosenzweig and D. Hillel, Eds., ICP Series on Climate Change Impacts, Adaptation, and Mitigation, Vol. 3, World Scientific, 261–277.

    • Search Google Scholar
    • Export Citation
  • Feng, S., M. Oppenheimer, and W. Schlenker, 2012: Climate change, crop yields, and internal migration in the United States. National Bureau of Economic Research Working Paper 17734, 43 pp. [Available online at http://www.nber.org/papers/w17734.pdf.]

  • Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hatfield, J. L., K. J. Boote, B. Kimball, L. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe, 2011: Climate impacts on agriculture: Implications for crop production. Agron. J., 103, 351370, doi:10.2134/agronj2010.0303.

    • Search Google Scholar
    • Export Citation
  • Higgins, R., V. Kousky, V. Silva, E. Becker, and P. Xie, 2010: Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products. J. Climate, 23, 46374650, doi:10.1175/2010JCLI3638.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Jones, J., and Coauthors, 2003: The DSSAT cropping system model. Eur. J. Agron., 18 (3–4), 235265, doi:10.1016/S1161-0301(02)00107-7.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., 2013: Errors in climate datasets and their effects on statistical crop models. Agric. For. Meteor., 170, 5866, doi:10.1016/j.agrformet.2012.05.013.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014: Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science, 344, 516519, doi:10.1126/science.1251423.

    • Search Google Scholar
    • Export Citation
  • McDermid, S., and Coauthors, 2015: The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and protocols. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, C. Rosenzweig and D. Hillel, Eds., ICP Series on Climate Change Impacts, Adaptation, and Mitigation, Vol. 3, World Scientific, 191–220, doi:10.1142/9781783265640_0008.

  • Mo, K. C., L. N. Long, Y. Xia, S. Yang, J. E. Schemm, and M. Ek, 2011: Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. J. Hydrometeor., 12, 181205, doi:10.1175/2010JHM1310.1.

    • Search Google Scholar
    • Export Citation
  • Nachtergaele, F., and Coauthors, 2009: Harmonized World Soil Database (version 1.1). FAO and IIASA, 43 pp. [Available online at http://www.fao.org/fileadmin/templates/nr/documents/HWSD/HWSD_Documentation.pdf.]

  • Nelson, G. C., and Coauthors, 2014: Agriculture and climate change in global scenarios: Why don’t the models agree. Agric. Econ., 45, 85101, doi:10.1111/agec.12091.

    • Search Google Scholar
    • Export Citation
  • OECD/FAO, 2012: OECD-FAO agricultural outlook 2012. Organisation for Economic Co-operation and Development and U.N. Food and Agricultural Organization Rep., 286 pp., doi:10.1787/agr_outlook-2012-en.

  • Ostlie, K., W. Hutchison, and R. Hellmich, Eds., 1997: Bt corn and European corn borer. University of Minnesota Extension Service, NCR Publ. 602, 20 pp. [Available online at http://www.extension.umn.edu/agriculture/corn/pest-management/bt-corn-and-european-corn-borer/.]

  • Porter, J. R., and Coauthors, 2014: Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, C. B. Field et al., Eds., Cambridge University Press, 485–533.

  • Reichle, R. H., R. D. Koster, G. J. De Lannoy, B. A. Forman, Q. Liu, S. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change, 12, 197202, doi:10.1016/S0959-3780(02)00008-0.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and Coauthors, 2013: The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteor., 170, 166182, doi:10.1016/j.agrformet.2012.09.011.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos, 2014a: Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteor., 200, 233248, doi:10.1016/j.agrformet.2014.09.016.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., S. McDermid, C. Rosenzweig, G. A. Baigorria, J. W. Jones, C. C. Romero, and L. DeWayne Cecil, 2014b: Carbon–temperature–water change analysis for peanut production under climate change: A prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). Global Change Biol., 20, 394407, doi:10.1111/gcb.12412.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 31 May 2012, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Stackhouse, P., Jr., S. Gupta, S. Cox, T. Zhang, J. C. Mikovitz, and L. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 1012.

  • Statistical Methods Branch, 2012: The yield forecasting program of NASS. U.S. Department of Agriculture, National Agricultural Statistics Service, NASS Staff Rep. SMB 12-01, 104 pp. [Available online at http://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Advanced_Topics/Yield%20Forecasting%20Program%20of%20NASS.pdf.]

  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • van Wart, J., P. Grassini, and K. G. Cassman, 2013: Impact of derived global weather data on simulated crop yields. Global Change Biol., 19, 38223834, doi:10.1111/gcb.12302.

    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37 (7–8), 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Watson, J., and A. Challinor, 2013: The relative importance of rainfall, temperature and yield data for a regional-scale crop model. Agric. For. Meteor., 170, 4757, doi:10.1016/j.agrformet.2012.08.001.

    • Search Google Scholar
    • Export Citation
  • White, J., G. Hoogenboom, P. Stackhouse, P. Wilkens, and J. Hoel, 2011: Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agron. J., 103, 12421251, doi:10.2134/agronj2011.0038.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117,D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • You, L., and Coauthors, 2010: Spatial Production Allocation Model (SPAM), version 3, release 2. International Food Policy Research Institute. [Available online at http://MapSPAM.info.]

  • Zhao, Y., and Coauthors, 2007: Swift: Fast, reliable, loosely coupled parallel computation. Proc. 2007 IEEE Congress on Services, Salt Lake City, UT, IEEE, 199–206.