A Deeper Analysis of Center-Finding Techniques for Tropical Cyclones in Mesoscale Models. Part I: Low-Wavenumber Analysis

David R. Ryglicki National Research Council, Monterey, California

Search for other papers by David R. Ryglicki in
Current site
Google Scholar
PubMed
Close
and
Daniel Hodyss Naval Research Laboratory, Monterey, California

Search for other papers by Daniel Hodyss in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A deeper analysis of possible errors and inconsistencies in the analysis of vortex asymmetries owing to the placement of centers of tropical cyclones (TCs) in mesoscale models is presented. Previous works have established that components of the 2D and 3D structure of these TCs—primarily radial wind and vertical tilt—can vary greatly depending on how the center of a model TC is defined. This work will seek to expand the previous research on this topic, but only for the 2D structure. To be specific, this work will present how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices. It is shown that the errors associated with aliasing the mean are sensitive primarily to the difference between the peak of vorticity inside the radius of maximum winds and the average vorticity inside the core. Tangential wind and vorticity aliasing occur primarily in the core; radial wind aliasing spans the whole of the vortex. It is also shown that, when adding low-wavenumber asymmetries, the aliasing is dependent on the placement of the center relative to the location of the asymmetries on the vortex. It is also shown that the primary concern for 2D analysis when calculating the center of a TC is correctly resolving azimuthal wavenumber 0 tangential wind, because errors here will alias onto all higher wavenumbers, the specific structures of which are dependent on the structure of the mean vortex itself.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Rm. 254, Bldg. 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil

Abstract

A deeper analysis of possible errors and inconsistencies in the analysis of vortex asymmetries owing to the placement of centers of tropical cyclones (TCs) in mesoscale models is presented. Previous works have established that components of the 2D and 3D structure of these TCs—primarily radial wind and vertical tilt—can vary greatly depending on how the center of a model TC is defined. This work will seek to expand the previous research on this topic, but only for the 2D structure. To be specific, this work will present how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices. It is shown that the errors associated with aliasing the mean are sensitive primarily to the difference between the peak of vorticity inside the radius of maximum winds and the average vorticity inside the core. Tangential wind and vorticity aliasing occur primarily in the core; radial wind aliasing spans the whole of the vortex. It is also shown that, when adding low-wavenumber asymmetries, the aliasing is dependent on the placement of the center relative to the location of the asymmetries on the vortex. It is also shown that the primary concern for 2D analysis when calculating the center of a TC is correctly resolving azimuthal wavenumber 0 tangential wind, because errors here will alias onto all higher wavenumbers, the specific structures of which are dependent on the structure of the mean vortex itself.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Rm. 254, Bldg. 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil
Save
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in Hurricane Debby. Mon. Wea. Rev., 100, 208217, doi:10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, doi:10.1175/MWR3336.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845, doi:10.1175/MWR3351.1.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2012: Real-time tropical cyclone prediction using COAMPS-TC. Advances in Geophysics, Vol. 28, Academic Press, 15–28, doi:10.1142/9789814405683_0002.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldberg, T. Quirino, X. Zhang, F. Marks, K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting:Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, doi:10.1175/2008JAS2820.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, doi:10.1175/MWR-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, doi:10.1175/JAS3745.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. K., and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973, doi:10.1175/JAS3575.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. K., and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122, doi:10.1175/2007JAS2132.1.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Re-examining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425, doi:10.1175/JAS-3377.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]

  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, doi:10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, doi:10.1175/MWR-D-14-00044.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, doi:10.1175/BAMS-88-4-513.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of the vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., 2015: An analysis of a barotropically-unstable, high-Rossby number vortex in shear. J. Atmos. Sci., 72, 21522177, doi:10.1175/JAS-D-14-0180.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and R. E. Hart, 2015: An investigation of center-finding techniques for tropical cyclones in mesoscale models. J. Appl. Meteor. Climatol., 54, 825846, doi:10.1175/JAMC-D-14-0106.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and PV mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. S., and F. Zhang, 2013: How does the eye warm? Part II: Sensitivity to vertical wind shear and trajectory analysis. J. Atmos. Sci., 70, 18491873, doi:10.1175/JAS-D-12-0258.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: The beta drift of baroclinic vortices. part i: adiabatic vortices. J. Atmos. Sci., 53, 411427, doi:10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed., Academic Press, 676 pp.

  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial-value problem. J. Atmos. Sci., 49, 20152031, doi:10.1175/1520-0469(1992)049<2015:LMOASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, doi:10.1175/MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, doi:10.1175/2010JAMC2490.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., G. Y. Lien, J. H. Chen, and F. Zhang, 2010: Assimilation of tropical cylone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, doi:10.1175/2010JAS3444.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, Y. Jin, Q. Zhao, and J. Cao, 2015: A dynamically constrained method for determining the vortex centers of tropical cyclones predicted by high-resolution models. J. Atmos. Sci., 72, 88103, doi:10.1175/JAS-D-14-0090.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467, doi:10.1175/2009JAS2954.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 496 265 62
PDF Downloads 258 60 6