Raindrop Size Distribution in a Midlatitude Continental Squall Line Measured by Thies Optical Disdrometers over East China

Baojun Chen Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Baojun Chen in
Current site
Google Scholar
PubMed
Close
,
Jun Wang Weather Modification Office of Shandong Province, Jinan, China

Search for other papers by Jun Wang in
Current site
Google Scholar
PubMed
Close
, and
Dianli Gong Weather Modification Office of Shandong Province, Jinan, China

Search for other papers by Dianli Gong in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Disdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.

Denotes Open Access content.

Corresponding author address: Baojun Chen, School of Atmospheric Sciences, Nanjing University, Xianlin Campus, 163 Xianlin Avenue, Nanjing 210023, China. E-mail: bjchen@nju.edu.cn

Abstract

Disdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.

Denotes Open Access content.

Corresponding author address: Baojun Chen, School of Atmospheric Sciences, Nanjing University, Xianlin Campus, 163 Xianlin Avenue, Nanjing 210023, China. E-mail: bjchen@nju.edu.cn
Save
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Bloemink, H. I., and E. Lanzinger, 2005: Precipitation type from the Thies disdrometer. WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation 2005, Bucharest, Romania, WMO, 7 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(11)_Netherlands_4_Bloemink.pdf.]

  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based rainfall estimator. J. Appl. Meteor., 42, 652660, doi:10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brawn, D., and G. Upton, 2008: On the measurement of atmospheric gamma drop-size distributions. Atmos. Sci. Lett., 9, 245247, doi:10.1002/asl.198.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, doi:10.1175/2009JTECHA1236.1.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91, 215227, doi:10.2151/jmsj.2013-208.

    • Search Google Scholar
    • Export Citation
  • Chu, Y.-H., and C.-L. Su, 2008: An investigation of the slope-shape relation for gamma raindrop size distribution. J. Appl. Meteor. Climatol., 47, 25312544, doi:10.1175/2008JAMC1755.1.

    • Search Google Scholar
    • Export Citation
  • Fernández-Raga, M., and Coauthors, 2010: The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmos. Res., 96, 225240, doi:10.1016/j.atmosres.2009.07.013.

    • Search Google Scholar
    • Export Citation
  • Frasson, R. P. M., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101, 237255, doi:10.1016/j.atmosres.2011.02.014.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, doi:10.1175/JTECH-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/.]

  • Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol, 51, 941953, doi:10.1175/JAMC-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015a: Disdrometer network observations of finescale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, doi:10.1175/JAS-D-14-0136.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015b: On the variability of drop size distributions over areas. J. Atmos. Sci., 72, 13861397, doi:10.1175/JAS-D-14-0258.1.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagestrophen mit automatisher Auswerting (A spectrograph for rain drops with automatic analysis). Pure Appl. Geophys., 68, 240246, doi:10.1007/BF00874898.

    • Search Google Scholar
    • Export Citation
  • Jung, S. A., D. I. Lee, B. J. D. Jou, and H. Uyeda, 2012: Microphysical properties of maritime squall line observed on June 2, 2008 in Taiwan. J. Meteor. Soc. Japan, 90, 833850, doi:10.2151/jmsj.2012-516.

    • Search Google Scholar
    • Export Citation
  • Kumar, L. S., Y. H. Lee, and J. T. Ong, 2011: Two-parameter gamma drop size distribution models for Singapore. IEEE Trans. Geosci. Remote Sens., 49, 33713380, doi:10.1109/TGRS.2011.2124464.

    • Search Google Scholar
    • Export Citation
  • Lanzinger, E., M. Theel, and H. Windolph, 2006: Rainfall amount and intensity measured by the Thies laser precipitation monitor. WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation 2006, Geneva, Switzerland, WMO, 9 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-94-TECO2006/3(3)_Lanzinger_Germany.pdf.]

  • Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 13931412, doi:10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., D. Cimini, and M. Montopoli, 2010: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos. Res., 97, 583600, doi:10.1016/j.atmosres.2010.03.019.

    • Search Google Scholar
    • Export Citation
  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, doi:10.1175/2011JAS3617.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, doi:10.1175/MWR-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Moumouni, S., M. Gosset, and E. Houngninou, 2008: Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophys. Res. Lett., 35, L23807, doi:10.1029/2008GL035755.

    • Search Google Scholar
    • Export Citation
  • Nzeukou, A., H. Sauvageot, A. D. Ochou, and C. M. F. Kebe, 2004: Raindrop size distribution and radar parameters at Cape Verde. J. Appl. Meteor., 43, 90105, doi:10.1175/1520-0450(2004)043<0090:RSDARP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sarkar, T., S. Das, and A. Maitra, 2015: Assessment of different raindrop size measuring techniques: Inter-comparison of Doppler radar, impact and optical disdrometer. Atmos. Res., 160, 1527, doi:10.1016/j.atmosres.2015.03.001.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., M. Konwar, D. K. Sarma, M. C. R. Kalapureddy, and A. R. Jain, 2009: Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval. J. Appl. Meteor. Climatol., 48, 12451266, doi:10.1175/2008JAMC1948.1.

    • Search Google Scholar
    • Export Citation
  • Streets, D. G., C. Yu, Y. Wu, M. Chin, Z. Zhao, T. Hayasaka, and G. Shi, 2008: Aerosol trends over China, 1980–2000. Atmos. Res., 88, 174182, doi:10.1016/j.atmosres.2007.10.016.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thies Clima, 2007: Instructions for use: Laser Precipitation Monitor 5.4110.xx.x00 V2.4x STD. Adolph Thies GmbH and Co., 64 pp.

  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, doi:10.1175/2010JTECHA1349.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, doi:10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, doi:10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 17771791, doi:10.1175/2007JAMC1649.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, doi:10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor., 45, 14501464, doi:10.1175/JAM2406.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119, doi:10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation