The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering Properties

Kwo-Sen Kuo Earth System Science Interdisciplinary Center/University of Maryland, College Park, College Park, Maryland

Search for other papers by Kwo-Sen Kuo in
Current site
Google Scholar
PubMed
Close
,
William S. Olson Joint Center for Earth Systems Technology/University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
,
Benjamin T. Johnson Joint Center for Earth Systems Technology/University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Benjamin T. Johnson in
Current site
Google Scholar
PubMed
Close
,
Mircea Grecu Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

Search for other papers by Mircea Grecu in
Current site
Google Scholar
PubMed
Close
,
Lin Tian Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Clune NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Thomas L. Clune in
Current site
Google Scholar
PubMed
Close
,
Bruce H. van Aartsen Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Bruce H. van Aartsen in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Liang Liao Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

Search for other papers by Liang Liao in
Current site
Google Scholar
PubMed
Close
, and
Robert Meneghini NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A 3D growth model is used to simulate pristine ice crystals, which are aggregated using a collection algorithm to create larger, multicrystal particles. The simulated crystals and aggregates have mass-versus-size and fractal properties that are consistent with field observations. The growth/collection model is used to generate a large database of snow particles, and the single-scattering properties of each particle are computed using the discrete dipole approximation to account for the nonspherical geometries of the particles. At 13.6 and 35.5 GHz, the bulk radar reflectivities of nonspherical snow particle polydispersions differ from those of more approximate spherical, homogeneous, ice–air particle polydispersions that have the same particle size distributions, although the reflectivities of the nonspherical particles are roughly approximated by polydispersions of spheres of 0.1–0.2 g cm−3 density. At higher microwave frequencies, such as 165.5 GHz, the bulk extinction (and scattering) coefficients of the nonspherical snow polydispersions are comparable to those of low-density spheres, but the asymmetry parameters of the nonspherical particles are substantially less than those of spheres for a broad range of assumed spherical particle densities. Because of differences in the asymmetry of scatter, simulated microwave-scattering depressions using nonspherical particles may well exceed those of spheres for snow layers with the same vertical water path. It may be concluded that, in precipitation remote sensing applications that draw upon input from radar and/or radiometer observations spanning a range of microwave frequencies, nonspherical snow particle models should be used to properly interpret the observations.

Current affiliation: Atmospheric and Environmental Research, Inc., Lexington, Massachusetts.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William S. Olson, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: bill.olson@nasa.gov

Abstract

A 3D growth model is used to simulate pristine ice crystals, which are aggregated using a collection algorithm to create larger, multicrystal particles. The simulated crystals and aggregates have mass-versus-size and fractal properties that are consistent with field observations. The growth/collection model is used to generate a large database of snow particles, and the single-scattering properties of each particle are computed using the discrete dipole approximation to account for the nonspherical geometries of the particles. At 13.6 and 35.5 GHz, the bulk radar reflectivities of nonspherical snow particle polydispersions differ from those of more approximate spherical, homogeneous, ice–air particle polydispersions that have the same particle size distributions, although the reflectivities of the nonspherical particles are roughly approximated by polydispersions of spheres of 0.1–0.2 g cm−3 density. At higher microwave frequencies, such as 165.5 GHz, the bulk extinction (and scattering) coefficients of the nonspherical snow polydispersions are comparable to those of low-density spheres, but the asymmetry parameters of the nonspherical particles are substantially less than those of spheres for a broad range of assumed spherical particle densities. Because of differences in the asymmetry of scatter, simulated microwave-scattering depressions using nonspherical particles may well exceed those of spheres for snow layers with the same vertical water path. It may be concluded that, in precipitation remote sensing applications that draw upon input from radar and/or radiometer observations spanning a range of microwave frequencies, nonspherical snow particle models should be used to properly interpret the observations.

Current affiliation: Atmospheric and Environmental Research, Inc., Lexington, Massachusetts.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William S. Olson, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: bill.olson@nasa.gov
Save
  • Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding -matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735, doi:10.1016/j.jqsrt.2014.01.013.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Trans. Geosci. Remote Sens. Lett., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2013: Variability in millimeter wave scattering properties of dendritic ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 131, 105114, doi:10.1016/j.jqsrt.2013.05.009.

    • Search Google Scholar
    • Export Citation
  • Bruggeman, D. A. G., 1935: Berechnung verschiedener physickalischer Konstanten von heterogenen Substanzen. I. Dielectrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of different physical constants of heterogeneous substances. I. Dielectric constants and conductivity of mixtures of isotropic substances). Ann. Phys., 416, 636664, doi:10.1002/andp.19354160705.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and J. Goodman, 1993: Beyond Clausius–Mossotti— Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys. J., 405, 685697, doi:10.1086/172396.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • Falconer, K., 2003: Fractal Geometry: Mathematical Foundations and Applications. 2nd ed. John Wiley and Sons, 337 pp.

  • Field, P. R., 2000: Bimodal ice spectra in frontal clouds. Quart. J. Roy. Meteor. Soc., 126, 379392, doi:10.1002/qj.49712656302.

  • Fujiyoshi, Y., and G. Wakahama, 1985: On snow particles comprising an aggregate. J. Atmos. Sci., 42, 16671674, doi:10.1175/1520-0469(1985)042<1667:OSPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 65156522, doi:10.1002/2014GL061016.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, doi:10.1002/2015GL064040.

    • Search Google Scholar
    • Export Citation
  • Gravner, J., and D. Griffeath, 2009: Modeling of snow-crystal growth: A three-dimensional mesoscopic approach. Phys. Rev., 79E, 01 1601, doi:10.1103/PhysRevE.79.011601.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2008: Precipitating snow retrievals from combined airborne cloud radar and millimeter-wave radiometer observations. J. Appl. Meteor. Climatol., 47, 16341650, doi:10.1175/2007JAMC1728.1.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., L. Tian, W. S. Olson, and S. Tanelli, 2011: A robust dual-frequency radar profiling algorithm. J. Appl. Meteor. Climatol., 50, 15431557, doi:10.1175/2011JAMC2655.1.

    • Search Google Scholar
    • Export Citation
  • Gutkowicz-Krusin, D., and B. T. Draine, 2004: Propagation of electromagnetic waves on a rectangular lattice of polarizable points. Preprints, ArXiv:astro-ph, paper 0403082, 17 pp. [Available online at http://arXiv.org/abs/astro-ph/0403082.]

  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM ‘Day-1’, radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 25732591, doi:10.1175/1520-0469(2003)060<2573:POTAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956, doi:10.1175/1520-0469(2003)060<0936:PFTCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol., 52, 18511867, doi:10.1175/JAMC-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Radar backscattering properties of nonspherical ice crystals at 94 GHz. J. Geophys. Res., 112, D22203, doi:10.1029/2007JD008839.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., 2008: Radar backscattering computations for fractal-shaped snowflakes. J. Meteor. Soc. Japan, 86, 459469, doi:10.2151/jmsj.86.459.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., G. W. Petty, and G. Skofronick-Jackson, 2012: Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. J. Appl. Meteor. Climatol., 51, 21522171, doi:10.1175/JAMC-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285, doi:10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., M. J. Hiley, R. Bennartz, S. Kneifel, and S. Tanelli, 2014: Triple-frequency radar reflectivity signatures of snow: Observations and comparisons with theoretical ice particle scattering models. J. Appl. Meteor. Climatol., 53, 10801098, doi:10.1175/JAMC-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunz, K. S., and R. J. Luebbers, 1993: The Finite Difference Time Domain Method for Electromagnetics. CRC Press, 464 pp.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., S. Kneifel, D. Moisseev, J. Tyynelä, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., D. Moisseev, and T. Nousiainen, 2013: Linking snowflake microstructure to multi-frequency radar observations. J. Geophys. Res. Atmos., 118, 32593270, doi:10.1002/jgrd.50163.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and K. Sassen, 1994: Investigation of the relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res., 34, 231248, doi:10.1016/0169-8095(94)90094-9.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506, doi:10.1175/JTECH1808.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, H. K. Nowell, and G. Liu, 2013: Scattering computations of snow aggregates from simple geometrical particle models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 14091417, doi:10.1109/JSTARS.2013.2255262.

    • Search Google Scholar
    • Export Citation
  • Liu, C., R. L. Panetta, and P. Yang, 2012: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 17281740, doi:10.1016/j.jqsrt.2012.04.021.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., E. E. Clothiaux, K. Aydin, G. Botta, and J. Verlinde, 2013: Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh–Gans theory. J. Quant. Spectrosc. Radiat. Transfer, 131, 95104, doi:10.1016/j.jqsrt.2013.05.008.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., E. E. Clothiaux, K. Aydin, and J. Verlinde, 2014: Estimating ice particle scattering properties using a modified Rayleigh–Gans approximation. J. Geophys. Res. Atmos., 119, 10 47110 484, doi:10.1002/2014JD021850.

    • Search Google Scholar
    • Export Citation
  • Maruyama, K., and Y. Fujiyoshi, 2005: Monte Carlo simulation of the formation of snowflakes. J. Atmos. Sci., 62, 15291544, doi:10.1175/JAS3416.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 1996: Comparisons of cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method. J. Appl. Meteor., 35, 16581670, doi:10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowell, H., G. Liu, and R. Honeyager, 2013: Modeling the microwave single-scattering properties of aggregate snowflakes. J. Geophys. Res. Atmos., 118, 78737885, doi:10.1002/jgrd.50620.

    • Search Google Scholar
    • Export Citation
  • Numrich, R. W., T. L. Clune, and K.-S. Kuo, 2013: A new parallel version of the DDSCAT code for electromagnetic scattering from big targets. Proc. 33rd Progress in Electromagnetics Research Symp., Taipei, Taiwan, Electromagnetics Academy. [Available online at http://piers.org/piersproceedings/piers2013TaipeiProc.php?start=150.]

  • Olson, W. S., P. Bauer, C. D. Kummerow, Y. Hong, and W.-K. Tao, 2001: A melting layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations. J. Appl. Meteor., 40, 11641179, doi:10.1175/1520-0450(2001)040<1164:AMLMFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer, and in situ observations. J. Appl. Meteor. Climatol., 55, 709722, doi:10.1175/JAMC-D-15-0131.1.

    • Search Google Scholar
    • Export Citation
  • Ori, D., T. Maestri, R. Rizzi, D. Cimini, M. Montopoli, and F. S. Marzano, 2014: Scattering properties of modeled complex snowflakes and mixed-phase particles at microwave and millimeter frequencies. J. Geophys. Res. Atmos., 119, 99319947, doi:10.1002/2014JD021616.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscattering and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705714, doi:10.1086/152538.

    • Search Google Scholar
    • Export Citation
  • Roberti, L., J. Haferman, and C. Kummerow, 1994: Microwave radiative transfer through horizontally inhomogeneous precipitating clouds. J. Geophys. Res., 99, 16 70716 718, doi:10.1029/94JD01150.

    • Search Google Scholar
    • Export Citation
  • Sarkar, T. K., E. Arvas, and S. M. Rao, 1986: Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies. IEEE Trans. Antennas Propag., AP-34, 635640, doi:10.1109/TAP.1986.1143871.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimension characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051615, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, doi:10.1002/2013GL058781.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Tang, C., and K. Aydin, 1995: Scattering from ice crystals at 94 and 220 GHz millimeter wave frequencies. IEEE Trans. Geosci. Remote Sens., 33, 9399, doi:10.1109/36.368218.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousiainen, 2013: Applicability of the Rayleigh–Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res. Atmos., 118, 18261839, doi:10.1002/jgrd.50167.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., G. M. Jackson, M. R. Schwaller, C. M. Johnson, W. B. Monosmith, and Z. Zhang, 2013: Observations of storm signatures by the recently modified Conical Scanning Millimeter-Wave Imaging Radiometer. IEEE Trans. Geosci. Remote Sens., 51, 411424, doi:10.1109/TGRS.2012.2200690.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and R. Davies, 1978: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res., 83, 30993107, doi:10.1029/JC083iC06p03099.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and M.-J. Kim, 2007: A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors. J. Atmos. Sci., 64, 634644, doi:10.1175/JAS3841.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-l., 1995: Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 45734588, doi:10.1364/AO.34.004573.

  • Xu, Y.-l., and B. A. S. Gustafson, 2001: A generalized multiparticle Mie-solution: Further experimental verification. J. Quant. Spectrosc. Radiat. Transfer, 70, 395419, doi:10.1016/S0022-4073(01)00019-X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1366 474 157
PDF Downloads 953 255 25