The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

William S. Olson Joint Center for Earth Systems Technology/University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
,
Lin Tian Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
,
Mircea Grecu Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

Search for other papers by Mircea Grecu in
Current site
Google Scholar
PubMed
Close
,
Kwo-Sen Kuo Earth System Science Interdisciplinary Center/University of Maryland, College Park, College Park, Maryland

Search for other papers by Kwo-Sen Kuo in
Current site
Google Scholar
PubMed
Close
,
Benjamin T. Johnson Joint Center for Earth Systems Technology/University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Benjamin T. Johnson in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Aaron Bansemer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
,
Gerald M. Heymsfield NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
James R. Wang NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by James R. Wang in
Current site
Google Scholar
PubMed
Close
, and
Robert Meneghini NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar–radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice–air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraftborne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

Current affiliation: Atmospheric and Environmental Research, Inc., Lexington, Massachusetts.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Olson, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: bill.olson@nasa.gov

Abstract

In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar–radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice–air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraftborne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

Current affiliation: Atmospheric and Environmental Research, Inc., Lexington, Massachusetts.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Olson, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: bill.olson@nasa.gov
Save
  • Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735, doi:10.1016/j.jqsrt.2014.01.013.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Bruggeman, D. A. G., 1935: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielectrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen (Calculation of different physical constants of heterogeneous substances. I. Dielectric constants and conductivity of mixtures of isotropic substances). Ann. Phys., 416, 636664, doi:10.1002/andp.19354160705.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • Gravner, J., and D. Griffeath, 2009: Modeling of snow-crystal growth: A three-dimensional mesoscopic approach. Phys. Rev., 79E, 011601, doi:10.1103/PhysRevE.79.011601.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2008: Precipitating snow retrievals from combined airborne cloud radar and millimeter-wave radiometer observations. J. Appl. Meteor. Climatol., 47, 16341650, doi:10.1175/2007JAMC1728.1.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, and E. N. Anagnostou, 2004: Retrieval of precipitation profiles from multiresolution, multifrequency, active and passive microwave observations. J. Appl. Meteor., 43, 562575, doi:10.1175/1520-0450(2004)043<0562:ROPPFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., L. Tian, W. S. Olson, and S. Tanelli, 2011: A robust dual-frequency radar profiling algorithm. J. Appl. Meteor. Climatol., 50, 15431557, doi:10.1175/2011JAMC2655.1.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., D. A. Short, S. L. Durden, E. Im, S. Hensley, M. B. Grable, and R. A. Black, 1997a: A new parameterization of the rain drop size distribution. IEEE Trans. Geosci. Remote Sens., 35, 532539, doi:10.1109/36.581961.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., E. A. Smith, C. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997b: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799808.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol., 52, 18511867, doi:10.1175/JAMC-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Radar backscattering properties of nonspherical ice crystals at 94 GHz. J. Geophys. Res., 112, D22203, doi:10.1029/2007JD008839.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 131–169.

  • Houze, R. A., Jr., 1981: Structures of atmospheric precipitation systems: A global survey. Radio Sci., 16, 671689, doi:10.1029/RS016i005p00671.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr, 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and D. D. Churchill, 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44, 18451867, doi:10.1175/1520-0469(1987)044<1845:MOACMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2010: Midlatitude Continental Convective Clouds Experiment (MC3E). DOE Planning Doc. DOE/SC-ARM/10-004, 31 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/MC3E_plan_2010.pdf.]

  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., T. Kameda, K. Higuchi, and A. Yamashita, 2013: A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions. Atmos. Res., 132–133, 460472, doi:10.1016/j.atmosres.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., M. J. Hiley, R. Bennartz, S. Kneifel, and S. Tanelli, 2014: Triple-frequency radar reflectivity signatures of snow: Observations and comparisons with theoretical ice particle scattering models. J. Appl. Meteor. Climatol., 53, 10801098, doi:10.1175/JAMC-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, doi:10.1175/JAMC-D-15-0130.1.

  • Leinonen, K., S. Kneifel, D. Moisseev, J. Tyynelä, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2011: A study on the feasibility of dual-wavelength radar for identification of hydrometeor phases. J. Appl. Meteor. Climatol., 50, 449456, doi:10.1175/2010JAMC2499.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506, doi:10.1175/JTECH1808.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2009: Measurements and simulations of nadir-viewing radar returns from the melting layer at X and W bands. J. Appl. Meteor. Climatol., 48, 22152226, doi:10.1175/2009JAMC2033.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929, doi:10.1175/JTECH1751.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 1996: Comparisons of the cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method. J. Appl. Meteor., 35, 16581670, doi:10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 2000: Effective dielectric constants of mixed-phase hydrometeors. J. Atmos. Oceanic Technol., 17, 628640, doi:10.1175/1520-0426(2000)017<0628:EDCOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and J. A. Jones, 2011: Standard deviation of spatially averaged surface cross section data from the TRMM precipitation radar. IEEE Geosci. Remote Sens. Lett., 8, 293297, doi:10.1109/LGRS.2010.2064755.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., R. Iguchi, T. Kozu, L. Liao, K. Okomoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and C. D. Kummerow, 2011: A modular optimal estimation method for combined radar–radiometer precipitation profiling. J. Appl. Meteor. Climatol., 50, 443448, doi:10.1175/2010JAMC2535.1.

    • Search Google Scholar
    • Export Citation
  • Nowell, H., G. Liu, and R. Honeyager, 2013: Modeling the microwave single-scattering properties of aggregate snowflakes. J. Geophys. Res. Atmos., 118, 78737885, doi:10.1002/jgrd.50620.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W.-K. Tao, L. Liao, and R. Meneghini, 2001: A melting layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40, 11451163, doi:10.1175/1520-0450(2001)040<1145:AMLMFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ori, D., T. Maestri, R. Rizzi, D. Cimini, M. Montopoli, and F. S. Marzano, 2014: Scattering properties of modeled complex snowflakes and mixed-phase particles at microwave and millimeter frequencies. J. Geophys. Res. Atmos., 119, 99319947, doi:10.1002/2014JD021616.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and T. Iguchi, 2011: Applicability of the iterative backward retrieval method for the GPM dual-frequency precipitation radar. IEEE Trans. Geosci. Remote Sens., 49, 18271838, doi:10.1109/TGRS.2010.2102766.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. Bansemer, A. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, N., H. Kuroiwa, and T. Kawanishi, 2003: Four year result of external calibration for precipitation radar (PR) of the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 41, 23982403, doi:10.1109/TGRS.2003.817180.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, and E. Im, 2006: Simultaneous measurements of Ku- and Ka-band sea surface cross sections by an airborne radar. IEEE Geosci. Remote Sens. Lett., 3, 359363, doi:10.1109/LGRS.2006.872929.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., G. Skofronick-Jackson, M. R. Schwaller, C. M. Johnson, W. B. Monosmith, and Z. Zhang, 2013: Observations of storm signatures by the recently modified Conical Scanning Millimeter-wave Imaging Radiometer. IEEE Trans. Geosci. Remote Sens., 51, 411424, doi:10.1109/TGRS.2012.2200690.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and R. Davies, 1978: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res., 83, 30993107, doi:10.1029/JC083iC06p03099.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and M. J. Kim, 2007: A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors. J. Atmos. Sci., 64, 634644, doi:10.1175/JAS3841.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1461 1040 451
PDF Downloads 425 142 15