Dynamical Downscaling of ERA-Interim Temperature and Precipitation for Alaska

Peter A. Bieniek * International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Peter A. Bieniek in
Current site
Google Scholar
PubMed
Close
,
Uma S. Bhatt Geophysical Institute and Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Uma S. Bhatt in
Current site
Google Scholar
PubMed
Close
,
John E. Walsh * International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by John E. Walsh in
Current site
Google Scholar
PubMed
Close
,
T. Scott Rupp Scenarios Network for Alaska and Arctic Planning, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by T. Scott Rupp in
Current site
Google Scholar
PubMed
Close
,
Jing Zhang Department of Physics and Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina

Search for other papers by Jing Zhang in
Current site
Google Scholar
PubMed
Close
,
Jeremy R. Krieger Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Jeremy R. Krieger in
Current site
Google Scholar
PubMed
Close
, and
Rick Lader * International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Rick Lader in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been downscaled using a regional model covering Alaska at 20-km spatial and hourly temporal resolution for 1979–2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim, WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Improvements include increased winter and decreased summer higher-elevation downscaled seasonal average temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis. These spatial distributions of temperature and precipitation are consistent with the few available gridded observational datasets that account for topography. The downscaled precipitation generally exceeds observationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska because biases vary and may even change sign with elevation.

Corresponding author address: Peter A. Bieniek, 930 Koyukuk Dr., P.O. Box 757340, Fairbanks, AK 99775. E-mail: pbieniek@alaska.edu

Abstract

The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been downscaled using a regional model covering Alaska at 20-km spatial and hourly temporal resolution for 1979–2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim, WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Improvements include increased winter and decreased summer higher-elevation downscaled seasonal average temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis. These spatial distributions of temperature and precipitation are consistent with the few available gridded observational datasets that account for topography. The downscaled precipitation generally exceeds observationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska because biases vary and may even change sign with elevation.

Corresponding author address: Peter A. Bieniek, 930 Koyukuk Dr., P.O. Box 757340, Fairbanks, AK 99775. E-mail: pbieniek@alaska.edu
Save
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., J. Zhang, W. V. Tangborn, C. S. Lingle, and L. Phillips, 2007: Examining glacier mass balances with a hierarchical modeling approach. Comput. Sci. Eng., 9 (2), 6067, doi:10.1109/MCSE.2007.29.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and Coauthors, 2013: Recent declines in warming and Arctic vegetation greening trends over pan-Arctic tundra. Remote Sens., 5, 42294254, doi:10.3390/rs5094229.

    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., and Coauthors, 2012: Climate divisions for Alaska based on objective methods. J. Appl. Meteor. Climatol., 51, 12761289, doi:10.1175/JAMC-D-11-0168.1.

    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., J. E. Walsh, R. L. Thoman, and U. S. Bhatt, 2014: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J. Climate, 27, 28002818, doi:10.1175/JCLI-D-13-00342.1.

    • Search Google Scholar
    • Export Citation
  • Bourne, S. M., U. S. Bhatt, J. Zhang, and R. Thoman, 2010: Surface-based temperature inversions in Alaska from a climate perspective. Atmos. Res., 95, 353366, doi:10.1016/j.atmosres.2009.09.013.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2527, in press.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 12821294, doi:10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Xu, and D. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Climate, 28, 28232841, doi:10.1175/JCLI-D-14-00300.1.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. World Meteorological Organization Final Rep. WMO TD 872, 212 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Grell, G., J. Dudhia, and D. Stauffer 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., doi:10.5065/D60Z716B.

  • Hill, D. F., N. Bruhis, S. E. Calos, A. Arendt, and J. Beamer, 2015: Spatial and temporal variability of freshwater discharge into the Gulf of Alaska. J. Geophys. Res. Oceans, 120, 634646, doi:10.1002/2014JC010395.

    • Search Google Scholar
    • Export Citation
  • Huang, X., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, doi:10.1175/2008MWR2577.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knell, N. F., 2008: The reemergence of the Arctic as a strategic location. School of Advanced Military Studies, U.S. Army Command and General Staff College, 115 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a494394.pdf.]

  • Lader, R., U. S. Bhatt, J. E. Walsh, T. S. Rupp, and P. A. Bieniek, 2016: Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-15-0162.1, in press.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, J. Han, and J. O. Roads, 2003: Intercomparison of global reanalyses and regional simulations of cold season water budgets in the western United States. J. Hydrometeor., 4, 10671087, doi:10.1175/1525-7541(2003)004<1067:IOGRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., L. Wang, D. Chen, K. Yang, B. Xue, and L. Sun, 2013: Near-surface air temperature lapse rates in the mainland China during 1962–2011. J. Geophys. Res. Atmos., 118, 75057515, doi:10.1002/jgrd.50553.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., J. R. Krieger, and J. Zhang, 2014: Toward producing the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) via the WRFDA data assimilation system. Mon. Wea. Rev., 142, 788805, doi:10.1175/MWR-D-13-00063.1.

    • Search Google Scholar
    • Export Citation
  • Malingowski, J., D. Atkinson, G. J. Fochesatto, J. Cherry, and E. Stevens, 2014: An observational study of radiation temperature inversions in Fairbanks, Alaska. Polar Sci., 8, 2439, doi:10.1016/j.polar.2014.01.002.

    • Search Google Scholar
    • Export Citation
  • Markon, C. J., S. F. Trainor, and F. S. Chapin III, Eds., 2012: The United States National Climate Assessment—Alaska technical regional report. U.S. Geological Survey Circular 1379, 148 pp. [Available online at http://pubs.usgs.gov/circ/1379/pdf/circ1379.pdf.]

  • Mayfield, J. A., and G. J. Fochesatto, 2013: The layered structure of the winter atmospheric boundary layer in the interior of Alaska. J. Appl. Meteor. Climatol., 52, 953973, doi:10.1175/JAMC-D-12-01.1.

    • Search Google Scholar
    • Export Citation
  • McAfee, S., G. Guentchev, and J. Eischeid, 2014: Reconciling precipitation trends in Alaska: 2. Gridded data analyses. J. Geophys. Res., 119, 13 82013 837, doi:10.1002/2014JD022461.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and G. Kramm, 2010: A case study on wintertime inversions in interior Alaska with WRF. Atmos. Res., 95, 314332, doi:10.1016/j.atmosres.2009.06.002.

    • Search Google Scholar
    • Export Citation
  • Morrison, H. C., G. Thomposn, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Shulski, M., and G. Wendler, 2007: The Climate of Alaska. University of Alaska Press, 216 pp.

  • Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M. D. Fleming, 2005: Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods. Arctic, 58, 137161.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note, NCAR/TN-475+STR, 113 pp, doi:10.5065/D68S4MVH.

  • Soares, P. M. M., R. M. Cardoso, P. M. A. Miranda, J. de Medeiros, M. Belo-Pereira, and F. Espirito-Santo, 2012: WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Climate Dyn., 39, 24972522, doi:10.1007/s00382-012-1315-2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, P. K., D. Han, M. A. Rico-Ramirez, and T. Islam, 2013: Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model. Atmos. Sci. Lett., 14, 118125, doi:10.1002/asl2.427.

    • Search Google Scholar
    • Export Citation
  • Srivastava, P. K., D. Han, M. A. Rico-Ramirez, and T. Islam, 2014: Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol. Processes, 28, 44194432, doi:10.1002/hyp.9946.

    • Search Google Scholar
    • Export Citation
  • Wendler, G., B. Moore, and K. Galloway, 2014: Strong temperature increase and shrinking sea ice in Arctic Alaska. Open Atmos. Sci. J., 8, 715, doi:10.2174/1874282301408010007.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zhang, J., U. S. Bhatt, W. V. Tangborn, and C. S. Lingle, 2007a: Response of glaciers in northwestern North America to future climate change: An atmosphere/glacier hierarchical modeling approach. Ann. Glaciol., 46, 283290, doi:10.3189/172756407782871378.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., U. S. Bhatt, W. V. Tangborn, and C. S. Lingle, 2007b: Climate downscaling for estimating glacier mass balances in northwestern North America: Validation with a USGS benchmark glacier. Geophys. Res. Lett., 34, L21505, doi:10.1029/2007GL031139.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Liu, W. Tao, J. Krieger, M. Shulski, and X. Zhang, 2016: Mesoscale climatology and variation of surface winds over the Chukchi–Beaufort coastal areas. J Climate, doi:10.1175/JCLI-D-15-0436.1, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. Zhang, 2001: Heat and freshwater budgets and pathways in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57, 207237, doi:10.1023/A:1011147309004.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2013: Final project report for the Beaufort and Chukchi Seas Mesoscale Meteorology Modeling Study. Bureau of Ocean Energy Management, 4 pp. [Available online at http://www.data.boem.gov/PI/PDFImages/ESPIS/5/5301.pdf.]

  • Ziemen, F., R. Hock, A. Aschwanden, C. Khroulev, C. Kienholz, A. K. Melkonian, and J. Zhang, 2016: Modeling the evolution of the Juneau Icefield between 1971 and 2100 using the Parallel Ice Sheet Model (PISM). J. Glaciol., in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4642 3061 563
PDF Downloads 1086 237 16