Analysis of Urban Effects in Oklahoma City using a Dense Surface Observing Network

Xiao-Ming Hu Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xiao-Ming Hu in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
Petra M. Klein Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petra M. Klein in
Current site
Google Scholar
PubMed
Close
,
Bradley G. Illston Oklahoma Mesonet, Oklahoma Climatological Survey, University of Oklahoma, Norman, Oklahoma

Search for other papers by Bradley G. Illston in
Current site
Google Scholar
PubMed
Close
, and
Sheng Chen Key Laboratory of Beibu Gulf Environmental Evolution and Resources Utilization, Guangxi Teachers Education University, Ministry of Education, Nanning, Guangxi, China, and Hydrometeorology and Remote Sensing Laboratory, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Sheng Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Many studies have investigated urban heat island (UHI) intensity for cities around the world, which is normally quantified as the temperature difference between urban location(s) and rural location(s). A few open questions still remain regarding the UHI, such as the spatial distribution of UHI intensity, temporal (including diurnal and seasonal) variation of UHI intensity, and the UHI formation mechanism. A dense network of atmospheric monitoring sites, known as the Oklahoma City (OKC) Micronet (OKCNET), was deployed in 2008 across the OKC metropolitan area. This study analyzes data from OKCNET in 2009 and 2010 to investigate OKC UHI at a subcity spatial scale for the first time. The UHI intensity exhibited large spatial variations over OKC. During both daytime and nighttime, the strongest UHI intensity is mostly confined around the central business district where land surface roughness is the highest in the OKC metropolitan area. These results do not support the roughness warming theory to explain the air temperature UHI in OKC. The UHI intensity of OKC increased prominently around the early evening transition (EET) and stayed at a fairly constant level throughout the night. The physical processes during the EET play a critical role in determining the nocturnal UHI intensity. The near-surface rural temperature inversion strength was a good indicator for nocturnal UHI intensity. As a consequence of the relatively weak near-surface rural inversion, the strongest nocturnal UHI in OKC was less likely to occur in summer. Other meteorological factors (e.g., wind speed and cloud) can affect the stability/depth of the nighttime boundary layer and can thus modulate nocturnal UHI intensity.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0206.s1.

Corresponding author address: Dr. Xiao-Ming Hu, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xhu@ou.edu

Abstract

Many studies have investigated urban heat island (UHI) intensity for cities around the world, which is normally quantified as the temperature difference between urban location(s) and rural location(s). A few open questions still remain regarding the UHI, such as the spatial distribution of UHI intensity, temporal (including diurnal and seasonal) variation of UHI intensity, and the UHI formation mechanism. A dense network of atmospheric monitoring sites, known as the Oklahoma City (OKC) Micronet (OKCNET), was deployed in 2008 across the OKC metropolitan area. This study analyzes data from OKCNET in 2009 and 2010 to investigate OKC UHI at a subcity spatial scale for the first time. The UHI intensity exhibited large spatial variations over OKC. During both daytime and nighttime, the strongest UHI intensity is mostly confined around the central business district where land surface roughness is the highest in the OKC metropolitan area. These results do not support the roughness warming theory to explain the air temperature UHI in OKC. The UHI intensity of OKC increased prominently around the early evening transition (EET) and stayed at a fairly constant level throughout the night. The physical processes during the EET play a critical role in determining the nocturnal UHI intensity. The near-surface rural temperature inversion strength was a good indicator for nocturnal UHI intensity. As a consequence of the relatively weak near-surface rural inversion, the strongest nocturnal UHI in OKC was less likely to occur in summer. Other meteorological factors (e.g., wind speed and cloud) can affect the stability/depth of the nighttime boundary layer and can thus modulate nocturnal UHI intensity.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0206.s1.

Corresponding author address: Dr. Xiao-Ming Hu, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xhu@ou.edu

Supplementary Materials

    • Supplemental Materials (PDF 166.98 KB)
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, doi:10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., F. D. Costa, and G. A. Degrazia, 2012: The coupling state of an idealized stable boundary layer. Bound.-Layer Meteor., 145, 211228, doi:10.1007/s10546-011-9676-3.

    • Search Google Scholar
    • Export Citation
  • Adachi, S. A., F. Kimura, H. Kusaka, M. G. Duda, Y. Yamagata, H. Seya, K. Nakamichi, and T. Aoyagi, 2014: Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo metropolitan area. J. Appl. Meteor. Climatol., 53, 18861900, doi:10.1175/JAMC-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Alcoforado, M. J., and H. Andrade, 2006: Nocturnal urban heat island in Lisbon (Portugal): Main features and modelling attempts. Theor. Appl. Climatol., 84, 151159, doi:10.1007/s00704-005-0152-1.

    • Search Google Scholar
    • Export Citation
  • Alonso, M. S., M. R. Fidalgo, and J. L. Labajo, 2007: The urban heat island in Salamanca (Spain) and its relationship to meteorological parameters. Climate Res., 34, 3946, doi:10.3354/cr034039.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216240, doi:10.1016/j.uclim.2014.03.011.

    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., C. H. Halios, S. E. Lane, and C. R. Wood, 2015: Observations of urban boundary layer structure during a strong urban heat island event. Environ. Fluid Mech., 15, 373398, doi:10.1007/s10652-014-9335-6.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., P. K. Hall, A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, 2008: Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res., 113, D20109, doi:10.1029/2008JD010311.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 23 0365, doi:10.1155/2010/230365.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and Coauthors, 2011: The Oklahoma City Micronet. Meteor. Appl., 18, 252261, doi:10.1002/met.189.

  • Bodine, D., P. M. Klein, S. C. Arms, and A. Shapiro, 2009: Variability of surface air temperature over gently sloped terrain. J. Appl. Meteor. Climatol., 48, 11171141, doi:10.1175/2009JAMC1933.1.

    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, doi:10.1002/qj.855.

    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., and Coauthors, 2015: Meteorology, air quality, and health in London: The ClearfLo project. Bull. Amer. Meteor. Soc., 96, 779804, doi:10.1175/BAMS-D-12-00245.1.

    • Search Google Scholar
    • Export Citation
  • Bonin, T., P. Chilson, B. Zielke, and E. Fedorovich, 2013: Observations of the early evening boundary-layer transition using a small unmanned aerial system. Bound.-Layer Meteor., 146, 119132, doi:10.1007/s10546-012-9760-3.

    • Search Google Scholar
    • Export Citation
  • Bottyán, Z., and J. Unger, 2003: A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol., 75, 233243, doi:10.1007/s00704-003-0735-7.

    • Search Google Scholar
    • Export Citation
  • Brandsma, T., and D. Wolters, 2012: Measurement and statistical modeling of the urban heat island of the city of Utrecht (the Netherlands). J. Appl. Meteor. Climatol., 51, 10461060, doi:10.1175/JAMC-D-11-0206.1.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camilloni, I., and M. Barrucand, 2012: Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol., 107, 4758, doi:10.1007/s00704-011-0459-z.

    • Search Google Scholar
    • Export Citation
  • Chapman, L., C. L. Muller, D. T. Young, E. L. Warren, C. S. B. Grimmond, X.-M. Cai, and E. J. S. Ferranti, 2015: The Birmingham urban climate laboratory: An open meteorological test bed and challenges of the smart city. Bull. Amer. Meteor. Soc., 96, 15451560, doi:10.1175/BAMS-D-13-00193.1.

    • Search Google Scholar
    • Export Citation
  • Chemel, C., and R. Sokhi, 2012: Response of London’s urban heat island to a marine air intrusion in an easterly wind regime. Bound.-Layer Meteor., 144, 6581, doi:10.1007/s10546-012-9705-x.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2012: Research priorities in observing and modeling urban weather and climate. Bull. Amer. Meteor. Soc., 93, 17251728, doi:10.1175/BAMS-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2014: Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLoS One, 9, e89681, doi:10.1371/journal.pone.0089681.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., and M. Roth, 2006: Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol., 26, 22432260, doi:10.1002/joc.1364.

    • Search Google Scholar
    • Export Citation
  • Clarke, J. F., 1969: Nocturnal urban boundary layer over Cincinnati, Ohio. Mon. Wea. Rev., 97, 582589, doi:10.1175/1520-0493(1969)097<0582:Nubloc>2.3.Co;2.

    • Search Google Scholar
    • Export Citation
  • Clinton, N., and P. Gong, 2013: MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ., 134, 294304, doi:10.1016/j.rse.2013.03.008.

    • Search Google Scholar
    • Export Citation
  • Cui, Y. Y., and B. de Foy, 2012: Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteor. Climatol., 51, 855868, doi:10.1175/JAMC-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Debbage, N., and J. M. Shepherd, 2015: The urban heat island effect and city contiguity. Comput. Environ. Urban Syst., 54, 181194, doi:10.1016/j.compenvurbsys.2015.08.002.

    • Search Google Scholar
    • Export Citation
  • De Ridder, K., C. Bertrand, G. Casanova, and W. Lefebvre, 2012: Exploring a new method for the retrieval of urban thermophysical properties using thermal infrared remote sensing and deterministic modeling. J. Geophys. Res., 117, D17108, doi:10.1029/2011JD017194.

    • Search Google Scholar
    • Export Citation
  • Dou, J. J., Y. C. Wang, R. Bornstein, and S. G. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94105, doi:10.1175/JAMC-D-13-0355.1.

    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. N. Hahmann, A. Pena, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting Model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, doi:10.1002/we.1555.

    • Search Google Scholar
    • Export Citation
  • Eliasson, I., and M. K. Svensson, 2003: Spatial air temperature variations and urban land use—A statistical approach. Meteor. Appl., 10, 135149, doi:10.1017/S1350482703002056.

    • Search Google Scholar
    • Export Citation
  • Fan, H. L., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39, 7384, doi:10.1016/j.atmosenv.2004.09.031.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., J. C. Torcolini, and R. Redman, 2005: Pseudovertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona. J. Appl. Meteor., 44, 313, doi:10.1175/JAM-2176.1.

    • Search Google Scholar
    • Export Citation
  • Fenner, D., F. Meier, D. Scherer, and A. Polze, 2014: Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate, 10, 308331, doi:10.1016/j.uclim.2014.02.004.

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., K. Kłysik, and J. Wibig, 2006: Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol., 84, 91101, doi:10.1007/s00704-005-0147-y.

    • Search Google Scholar
    • Export Citation
  • Frech, M., and L. Mahrt, 1995: A two-scale mixing formulation for the atmospheric boundary layer. Bound.-Layer Meteor., 73, 91104, doi:10.1007/BF00708931.

    • Search Google Scholar
    • Export Citation
  • Fung, W. Y., K. S. Lam, J. Nichol, and M. S. Wong, 2009: Derivation of nighttime urban air temperatures using a satellite thermal image. J. Appl. Meteor. Climatol., 48, 863872, doi:10.1175/2008JAMC2001.1.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, doi:10.1002/asl.153.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, S. Partridge, S. Quesenberry, and D. A. Robinson, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 75, 2942, doi:10.1007/s00704-002-0724-2.

    • Search Google Scholar
    • Export Citation
  • Georgakis, C., M. Santamouris, and G. Kaisarlis, 2010: The vertical stratification of air temperature in the center of Athens. J. Appl. Meteor. Climatol., 49, 12191232, doi:10.1175/2010JAMC2290.1.

    • Search Google Scholar
    • Export Citation
  • Giannaros, T. M., and D. Melas, 2012: Study of the urban heat island in a coastal Mediterranean City: The case study of Thessaloniki, Greece. Atmos. Res., 118, 103120, doi:10.1016/j.atmosres.2012.06.006.

    • Search Google Scholar
    • Export Citation
  • Giannaros, T. M., D. Melas, I. A. Daglis, I. Keramitsoglou, and K. Kourtidis, 2013: Numerical study of the urban heat island over Athens (Greece) with the WRF Model. Atmos. Environ., 73, 103111, doi:10.1016/j.atmosenv.2013.02.055.

    • Search Google Scholar
    • Export Citation
  • Godowitch, J. M., J. K. S. Ching, and J. F. Clarke, 1987: Spatial variation of the evolution and structure of the urban boundary-layer. Bound.-Layer Meteor., 38, 249272, doi:10.1007/BF00122447.

    • Search Google Scholar