Assimilation of Infrared Radiance Observations with Sensitivity to Land Surfaces in the Canadian Ensemble–Variational System

S. K. Dutta Meteorological Research Branch, Data Assimilation and Satellite Meteorology Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by S. K. Dutta in
Current site
Google Scholar
PubMed
Close
,
L. Garand Meteorological Research Branch, Data Assimilation and Satellite Meteorology Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by L. Garand in
Current site
Google Scholar
PubMed
Close
, and
S. Heilliette Meteorological Research Branch, Data Assimilation and Satellite Meteorology Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by S. Heilliette in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study highlights recent progress at the Canadian Meteorological Centre in the assimilation of Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) radiance observations that are sensitive to land surfaces. The assimilation is carried out using the Canadian global ensemble–variational system. That system benefits from flow-dependent background-error statistics that include covariances between surface skin temperature and atmospheric variables. Up to 142 channels from both AIRS and IASI are assimilated. A detailed database of spectral surface emissivity is used. Forecasts are evaluated against ERA-Interim analyses, own-cycle analyses, and radiosonde observations. A conservative approach is taken, with restrictive conditions on topography and surface emissivity. From 2-month assimilation experiments, a significant positive impact is obtained in the Northern Hemisphere extratropics beyond day 2 from the surface to the upper troposphere. The impact is mixed in other regions, depending on level or forecast lead time. Causes for these mixed results are examined in view of future experiments and eventual operational implementation.

Corresponding author address: Louis Garand, Environment Canada, Data Assimilation and Satellite Meteorology Section, 2121 Trans-Canada Highway, Dorval QC H9P 1J3, Canada. E-mail: louis.garand@canada.ca

Abstract

This study highlights recent progress at the Canadian Meteorological Centre in the assimilation of Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) radiance observations that are sensitive to land surfaces. The assimilation is carried out using the Canadian global ensemble–variational system. That system benefits from flow-dependent background-error statistics that include covariances between surface skin temperature and atmospheric variables. Up to 142 channels from both AIRS and IASI are assimilated. A detailed database of spectral surface emissivity is used. Forecasts are evaluated against ERA-Interim analyses, own-cycle analyses, and radiosonde observations. A conservative approach is taken, with restrictive conditions on topography and surface emissivity. From 2-month assimilation experiments, a significant positive impact is obtained in the Northern Hemisphere extratropics beyond day 2 from the surface to the upper troposphere. The impact is mixed in other regions, depending on level or forecast lead time. Causes for these mixed results are examined in view of future experiments and eventual operational implementation.

Corresponding author address: Louis Garand, Environment Canada, Data Assimilation and Satellite Meteorology Section, 2121 Trans-Canada Highway, Dorval QC H9P 1J3, Canada. E-mail: louis.garand@canada.ca
Save
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, doi:10.1109/TGRS.2002.808356.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, doi:10.1175/MWR-D-14-00354.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., and S. Liang, 2014: Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res. Atmos., 119, 614634, doi:10.1002/2013JD020689.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dutta, S. K., L. Garand, and S. Heilliette, 2015: Impact evaluation of assimilating surface sensitive infrared radiances over land and sea ice from observing system simulation experiments. Adv. Meteor., 847561, doi:10.1155/2015/847561.

    • Search Google Scholar
    • Export Citation
  • Garand, L., 2003: Toward an integrated land–ocean surface skin temperature analysis from the variational assimilation of infrared radiances. J. Appl. Meteor., 42, 570583, doi:10.1175/1520-0450(2003)042<0570:TAILSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garand, L., M. Buehner, and N. Wagneur, 2004: Background error correlation between surface skin and air temperatures: Estimation and impact on the assimilation of infrared window radiances. J. Appl. Meteor., 43, 18531863, doi:10.1175/JAM2175.1.

    • Search Google Scholar
    • Export Citation
  • Garand, L., S. Heilliette, and M. Buehner, 2007: Interchannel error correlation associated with AIRS radiance observations: Inference and impact in data assimilation. J. Appl. Meteor., 46, 714725, doi:10.1175/JAM2496.1.

    • Search Google Scholar
    • Export Citation
  • Garand, L., O. Pancrati, and S. Heilliette, 2011: Validation of forecast cloud parameters from multispectral AIRS radiances. Atmos.–Ocean, 49, 121137, doi:10.1080/07055900.2011.567379.

    • Search Google Scholar
    • Export Citation
  • Garand, L., M. Buehner, S. Heilliette, S. R. Macpherson, and A. Beaulne, 2013: Satellite radiance assimilation impact in new Canadian ensemble-variational system. Proc. 2013 EUMETSAT Meteorological Satellite Conf., Vienna, Austria, EUMETSAT, S12.04. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P_S12_04_GARAND_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau, 2007: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392354, doi:10.1175/MWR3394.1.

    • Search Google Scholar
    • Export Citation
  • Guedj, S., F. Karbou, and F. Rabier, 2011: Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land. J. Geophys. Res., 116, D14107, doi:10.1029/2011JD015776.

    • Search Google Scholar
    • Export Citation
  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 14531468, doi:10.1002/qj.49712757418.

    • Search Google Scholar
    • Export Citation
  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347370, doi:10.1175/BAMS-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, doi:10.1256/qj.05.135.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational Kalman filter. Mon. Wea. Rev., 142, 11431162, doi:10.1175/MWR-D-13-00138.1.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., F. Rabier, J.-F. Lafore, J. L. Redelsperger, and O. Bock, 2010: Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part II: Impacts of assimilating surface-sensitive channels on the African monsoon during AMMA. Wea. Forecasting, 25, 2036, doi:10.1175/2009WAF2222244.1.

    • Search Google Scholar
    • Export Citation
  • Klaes, K. D., and Coauthors, 2007: An introduction to the EUMETSAT Polar System. Bull. Amer. Meteor. Soc., 88, 10851096, doi:10.1175/BAMS-88-7-1085.

    • Search Google Scholar
    • Export Citation
  • Li, J., and H. W. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, doi:10.1256/qj.02.181.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, doi:10.1256/qj.04.171.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E. G., and B. Candy, 2014: Assimilation of surface-sensitive infrared radiances over land: Estimation of land surface temperature and emissivity. Quart. J. Roy. Meteor. Soc., 140, 11981208, doi:10.1002/qj.2218.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Search Google Scholar
    • Export Citation