Topographic Impacts on the Spatial Distribution of Deep Convection over Southern Quebec

Michael Kovacs Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec

Search for other papers by Michael Kovacs in
Current site
Google Scholar
PubMed
Close
and
Daniel J. Kirshbaum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec

Search for other papers by Daniel J. Kirshbaum in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Observations and numerical simulations reveal pronounced mesoscale variability in deep-convection occurrence over southern Quebec, Canada. A 22-yr climatology from the McGill radar just west of Montreal shows that deep-convection maxima exist (i) within the St. Lawrence valley surrounding Ottawa; (ii) within the Champlain valley of upstate New York, extending north to just east of Montreal; and (iii) in the lee of the Laurentian Mountains northeast of Trois-Rivières. These features are sensitive to the background low- to midlevel geostrophic wind direction, shifting northward as the southerly wind component increases. A meridional axis of suppressed convection also extends from Lake Ontario and the Adirondacks of New York north through Montreal and into the Laurentians. To physically interpret these features, a suite of quasi-idealized convection-permitting simulations is conducted. Analysis of the simulations, which broadly reproduce the observed extrema in convection occurrence, reveals that the maxima develop within pockets of moisture and mass convergence at the junctions of major river valleys and in the lee of prominent mountain ridges. In these locations, enhanced boundary layer humidity and convective available potential energy (CAPE) coincides with minimal convective inhibition (CIN). The minima occur over and downwind of water bodies, where limited surface heat fluxes reduce CAPE and increase CIN, and over the higher terrain, where reduced low-level moisture limits storm intensity.

Corresponding author address: Daniel J. Kirshbaum, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal QC H3A 0B9, Canada. E-mail: daniel.kirshbaum@mcgill.ca

Abstract

Observations and numerical simulations reveal pronounced mesoscale variability in deep-convection occurrence over southern Quebec, Canada. A 22-yr climatology from the McGill radar just west of Montreal shows that deep-convection maxima exist (i) within the St. Lawrence valley surrounding Ottawa; (ii) within the Champlain valley of upstate New York, extending north to just east of Montreal; and (iii) in the lee of the Laurentian Mountains northeast of Trois-Rivières. These features are sensitive to the background low- to midlevel geostrophic wind direction, shifting northward as the southerly wind component increases. A meridional axis of suppressed convection also extends from Lake Ontario and the Adirondacks of New York north through Montreal and into the Laurentians. To physically interpret these features, a suite of quasi-idealized convection-permitting simulations is conducted. Analysis of the simulations, which broadly reproduce the observed extrema in convection occurrence, reveals that the maxima develop within pockets of moisture and mass convergence at the junctions of major river valleys and in the lee of prominent mountain ridges. In these locations, enhanced boundary layer humidity and convective available potential energy (CAPE) coincides with minimal convective inhibition (CIN). The minima occur over and downwind of water bodies, where limited surface heat fluxes reduce CAPE and increase CIN, and over the higher terrain, where reduced low-level moisture limits storm intensity.

Corresponding author address: Daniel J. Kirshbaum, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal QC H3A 0B9, Canada. E-mail: daniel.kirshbaum@mcgill.ca
Save
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, doi:10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp.

  • Barthlott, C., and N. Kalthoff, 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 29712987, doi:10.1175/JAS-D-11-027.1.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., and I. Zawadzki, 2003: A 9-year summary of radar characteristics of mesocyclonic storms and of deep convection in southern Québec. Appl. Opt., 41, 99120.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2008: Surface boundaries of the southern plains: Their role in the initiation of convective storms. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 5–34.

  • Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, doi:10.1016/S1352-2310(99)00374-X.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, doi:10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and D. F. Tucker, 2005: Flow over heated terrain. Part I: Linear theory and idealized numerical simulations. Mon. Wea. Rev., 133, 25522564, doi:10.1175/MWR2964.1.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 19191941, doi:10.1175/MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and D. J. Parker, 2011: How does local tropical deforestation affect rainfall? Geophys. Res. Lett., 38, L19802, doi:10.1029/2011GL049099.

    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552, doi:10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, doi:10.1002/qj.2499.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., and J.-J. Baik, 2008: A theoretical and numerical study of urban heat island–induced circulation and convection. J. Atmos. Sci., 65, 18591877, doi:10.1175/2007JAS2326.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, doi:10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, doi:10.1175/2010JAS3642.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, doi:10.1175/JAS-D-12-0199.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and C.-C. Wang, 2014: Boundary layer updrafts driven by airflow over heated terrain. J. Atmos. Sci., 71, 14251442, doi:10.1175/JAS-D-13-0287.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., F. Fabry, and Q. Cazenave, 2016: The Mississippi Valley convection minimum on summer afternoons: Observations and numerical simulations. Mon. Wea. Rev., 144, 263272, doi:10.1175/MWR-D-15-0238.1.

    • Search Google Scholar
    • Export Citation
  • Kovacs, M., 2015: Preferred locations of deep convection over southern Quebec. M.S. thesis, Department of Atmospheric and Oceanic Sciences, McGill University, 67 pp.

  • Kuo, J.-T., and H. D. Orville, 1973: A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteor., 12, 359368, doi:10.1175/1520-0450(1973)012<0359:ARCOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. L. Baeck, S. Jessup, and J. A. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, doi:10.1175/JHM-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 430 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, D. Gerstle, C. Liu, and D. J. Kirshbaum, 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, doi:10.1175/2010JAS3558.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roy, S. B., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107, 8037, doi:10.1029/2000JD000266.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716738, doi:10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. R. Brook, I. Levy, P. A. Makar, J. Zhang, and P. A. Taylor, 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 79557973, doi:10.5194/acp-11-7955-2011.

    • Search Google Scholar
    • Export Citation
  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, doi:10.1175/MWR-D-13-00280.1.

    • Search Google Scholar
    • Export Citation
  • Souza, E. P., N. O. Renno, and M. A. F. S. Dias, 2000: Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57, 29152922, doi:10.1175/1520-0469(2000)057<2915:CCIBSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Search Google Scholar
    • Export Citation
  • Wasula, A. C., L. F. Bosart, and K. D. LaPenta, 2002: The influence of terrain on the severe weather distribution across interior eastern New York and western New England. Wea. Forecasting, 17, 12771289, doi:10.1175/1520-0434(2002)017<1277:TIOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Quart. J. Roy. Meteor. Soc., 137, 3141, doi:10.1002/qj.747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 504 187 58
PDF Downloads 356 53 2