Estimating Daytime Planetary Boundary Layer Heights over a Valley from Rawinsonde Observations at a Nearby Airport: An Application to the Page Valley in Virginia, United States

Temple R. Lee Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

Search for other papers by Temple R. Lee in
Current site
Google Scholar
PubMed
Close
and
Stephan F. J. De Wekker Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

Search for other papers by Stephan F. J. De Wekker in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The planetary boundary layer (PBL) height is an essential parameter required for many applications, including weather forecasting and dispersion modeling for air quality. Estimates of PBL height are not easily available and often come from twice-daily rawinsonde observations at airports, typically at 0000 and 1200 UTC. Questions often arise regarding the applicability of PBL heights retrieved from these twice-daily observations to surrounding locations. Obtaining this information requires knowledge of the spatial variability of PBL heights. This knowledge is particularly limited in regions with mountainous terrain. The goal of this study is to develop a method for estimating daytime PBL heights in the Page Valley, located in the Blue Ridge Mountains of Virginia. The approach includes using 1) rawinsonde observations from the nearest sounding station [Dulles Airport (IAD)], which is located 90 km northeast of the Page Valley, 2) North American Regional Reanalysis (NARR) output, and 3) simulations with the Weather Research and Forecasting (WRF) Model. When selecting days on which PBL heights from NARR compare well to PBL heights determined from the IAD soundings, it is found that PBL heights are higher (on the order of 200–400 m) over the Page Valley than at IAD and that these differences are typically larger in summer than in winter. WRF simulations indicate that larger sensible heat fluxes and terrain-following characteristics of PBL height both contribute to PBL heights being higher over the Page Valley than at IAD.

Current affiliation: University of Maryland Earth System Science Interdisciplinary Center, and NOAA ARL Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee.

Corresponding author address: Dr. Temple R. Lee, NOAA Atmospheric Turbulence and Diffusion Division, 456 S. Illinois Ave., Oak Ridge, TN 37830. E-mail: temple.lee@noaa.gov

Abstract

The planetary boundary layer (PBL) height is an essential parameter required for many applications, including weather forecasting and dispersion modeling for air quality. Estimates of PBL height are not easily available and often come from twice-daily rawinsonde observations at airports, typically at 0000 and 1200 UTC. Questions often arise regarding the applicability of PBL heights retrieved from these twice-daily observations to surrounding locations. Obtaining this information requires knowledge of the spatial variability of PBL heights. This knowledge is particularly limited in regions with mountainous terrain. The goal of this study is to develop a method for estimating daytime PBL heights in the Page Valley, located in the Blue Ridge Mountains of Virginia. The approach includes using 1) rawinsonde observations from the nearest sounding station [Dulles Airport (IAD)], which is located 90 km northeast of the Page Valley, 2) North American Regional Reanalysis (NARR) output, and 3) simulations with the Weather Research and Forecasting (WRF) Model. When selecting days on which PBL heights from NARR compare well to PBL heights determined from the IAD soundings, it is found that PBL heights are higher (on the order of 200–400 m) over the Page Valley than at IAD and that these differences are typically larger in summer than in winter. WRF simulations indicate that larger sensible heat fluxes and terrain-following characteristics of PBL height both contribute to PBL heights being higher over the Page Valley than at IAD.

Current affiliation: University of Maryland Earth System Science Interdisciplinary Center, and NOAA ARL Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee.

Corresponding author address: Dr. Temple R. Lee, NOAA Atmospheric Turbulence and Diffusion Division, 456 S. Illinois Ave., Oak Ridge, TN 37830. E-mail: temple.lee@noaa.gov
Save
  • Aneja, V. P., S. Pal Arya, Y. Li, C. G. Murray, and T. L. Manuszak, 2000: Climatology of diurnal trends and vertical distribution of ozone in the atmospheric boundary layer in urban North Carolina. J. Air Waste Manage, 50, 5464, doi:10.1080/10473289.2000.10463984.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., H. Jiang, and R. Mauritsen, 2010: Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 28952912, doi:10.1175/2010MWR3142.1.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., I. V. Djalaova, C. W. King, and J. M. Wilczak, 2011: Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s Central Valley. Bound.-Layer Meteor., 140, 491511, doi:10.1007/s10546-011-9622-4.

    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E. D., and Coauthors, 2014: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys., 14, 45154530, doi:10.5194/acp-14-4515-2014.

    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, doi:10.1002/qj.855.

    • Search Google Scholar
    • Export Citation
  • Clifford, S. F., J. C. Kaimal, R. J. Lataitis, and R. G. Strauch, 1994: Ground-based remote profiling in atmospheric studies: An overview. Proc. IEEE, 82, 313355, doi:10.1109/5.272138.

    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 1993: Statistics for Spatial Data. John Wiley and Sons, 900 pp.

  • Dabberdt, W. F., and Coauthors, 2004: Meteorological research needs for improved air quality forecasting: Report of the 11th prospectus development team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 85, 563586, doi:10.1175/BAMS-85-4-563.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., C. P. Normile, L. Sitka, D. M. Hondula, D. B. Knight, S. P. Gawtry, and P. J. Stenger, 2010: A comparison of trajectory and air mass approaches to examine ozone variability. Atmos. Environ., 44, 6474, doi:10.1016/j.atmosenv.2009.09.038.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., K. J. Davis, C. J. Senff, S. Ismail, E. V. Browell, D. R. Stauffer, and B. P. Reen, 2006: A case study on the effects of heterogeneous soil moisture on mesoscale boundary-layer structure in the southern Great Plains, U.S.A. Part I: Simple prognostic model. Bound.-Layer Meteor., 119, 195238, doi:10.1007/s10546-005-9024-6.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Ph.D. dissertation, University of British Columbia, 191 pp.

  • De Wekker, S. F. J., and M. Kossmann, 2015: Convective boundary layer heights over mountainous terrain—A review of concepts. Front. Earth Sci., 3, doi:10.3389/feart.2015.00077.

    • Search Google Scholar
    • Export Citation
  • Drüe, C., T. Hauf, and A. Hoff, 2010: Comparison of boundary-layer profiles and layer detection by AMDAR and WTR/RASS at Frankfurt Airport. Bound.-Layer Meteor., 135, 407432, doi:10.1007/s10546-010-9485-0.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elansky, N. F., M. A. Lokoshchenko, I. B. Belikov, A. I. Skorokhod, and R. A. Shumskii, 2007: Variability of trace gases in the atmospheric boundary layer from observations in the city of Moscow. Atmos. Ocean. Phys., 43, 219231, doi:10.1134/S0001433807020089.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 1998: Convective boundary layer height measurement with wind profilers and comparison to cloud base. J. Atmos. Oceanic Technol., 15, 13311338, doi:10.1175/1520-0426(1998)015<1331:CBLHMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, doi:10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hondula, D. M., and Coauthors, 2013: A respiratory alert model for the Shenandoah Valley, Virginia, USA. Int. J. Biometeor., 57, 91105, doi:10.1007/s00484-012-0537-7.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., D. C. Doughty, K. J. Sanchez, E. Joseph, and J. D. Fuentes, 2012: Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos. Environ., 46, 354364, doi:10.1016/j.atmosenv.2011.09.054.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, N. S., R. M. Hoff, and J. Bacmeister, 2010: Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res., 115, D24218, doi:10.1029/2009JD013777.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., H.-J. Binder, M. Kossmann, R. Vögtlin, U. Corsmeier, F. Fiedler, and H. Schlager, 1998: Temporal evolution and spatial variation of the boundary layer over complex terrain. Atmos. Environ., 32, 11791194, doi:10.1016/S1352-2310(97)00193-3.

    • Search Google Scholar
    • Export Citation
  • Ketterer, C., P. Zieger, N. Bukowiecki, M. Collaud Coen, O. Maier, D. Ruffieux, and E. Weingartner, 2014: Investigation of the planetary boundary layer in the Swiss Alps using remote sensing and in situ measurements. Bound.-Layer Meteor., 151, 317334, doi:10.1007/s10546-013-9897-8.

    • Search Google Scholar
    • Export Citation
  • Korhonen, K., and Coauthors, 2014: Atmospheric boundary layer top height in South Africa: Measurements with lidar and radiosonde compared to three atmospheric models. Atmos. Chem. Phys., 14, 42634278, doi:10.5194/acp-14-4263-2014.

    • Search Google Scholar
    • Export Citation
  • Kossmann, M., R. Vögtlin, U. Corsmeier, B. Vogel, F. Fiedler, H.-J. Binder, N. Kalthoff, and F. Beyrich, 1998: Aspects of the convective boundary layer structure over complex terrain. Atmos. Environ., 32, 13231348, doi:10.1016/S1352-2310(97)00271-9.

    • Search Google Scholar
    • Export Citation
  • Kretschmer, R., F. Koch, D. Feist, G. Biavati, U. Karstens, and C. Gerbig, 2013: Toward assimilation of observation-derived mixing heights to improve atmospheric tracer transport models. Lagrangian Modeling of the Atmosphere, J. Lin et al., Eds., Amer. Geophys. Union, doi:10.1029/2012GM001255.

  • Kretschmer, R., C. Gerbig, U. Karstens, G. Biavati, A. Vermeulen, F. Vogel, S. Hammer, and K. U. Totsche, 2014: Impact of optimized mixing heights on simulated regional atmospheric transport of CO2. Atmos. Chem. Phys., 14, 71497172, doi:10.5194/acp-14-7149-2014.

    • Search Google Scholar
    • Export Citation
  • Lee, T. R., 2015: The impact of planetary boundary layer dynamics on mountaintop trace gas variability. Ph.D. dissertation, University of Virginia, 213 pp.

  • Lee, T. R., S. F. J. De Wekker, A. E. Andrews, J. Kofler, and J. Williams, 2012: Carbon dioxide variability during cold front passages and fair weather days at a forested mountaintop site. Atmos. Environ., 46, 405416, doi:10.1016/j.atmosenv.2011.09.068.

    • Search Google Scholar
    • Export Citation
  • Lee, T. R., S. F. J. De Wekker, and J. E. B. Wofford, 2014a: Downscaling maximum temperature projections to subkilometer resolutions in the Shenandoah National Park of Virginia, USA. Adv. Meteor., 594965, doi:10.1155/2014/594965.

    • Search Google Scholar
    • Export Citation
  • Lee, T. R., S. F. J. De Wekker, and J. E. B. Wofford, 2014b: Downscaling temperatures to Shenandoah National Park using gridded climate data sets, high-resolution atmospheric models, and surface observations: Final report in completion of cooperative agreement 484010004. National Park Service Natural Resource Tech. Rep. NPS/SHEN/NRTR—2014/875, 96 pp. [Available online at http://irmafiles.nps.gov/reference/holding/495974.]

  • Lee, T. R., S. F. J. De Wekker, S. Pal, A. E. Andrews, and J. Kofler, 2015: Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains. Tellus, 67B, 25659, doi:10.3402/tellusb.v67.25659.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Search Google Scholar
    • Export Citation
  • Ma, M., Z. Pu, S. Wang, and Q. Zhang, 2011: Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China. Bound.-Layer Meteor., 140, 163176, doi:10.1007/s10546-011-9608-2.

    • Search Google Scholar
    • Export Citation
  • McGrath, R., T. Semmler, S. Sweeney, and S. Wang, 2006: Impact of balloon drift errors in radiosonde data on climate statistics. J. Climate, 19, 34303442, doi:10.1175/JCLI3804.1.

    • Search Google Scholar
    • Export Citation
  • Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945954, doi:10.1364/AO.38.000945.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Nyeki, S., and Coauthors, 2000: Convective boundary layer evolution to 4 km ASL over high-alpine terrain: Airborne lidar observations in the Alps. Geophys. Res. Lett., 27, 689692, doi:10.1029/1999GL010928.

    • Search Google Scholar
    • Export Citation
  • Olson, J., and G. Grell, 2014: Improving the Rapid Refresh and High Resolution Rapid Refresh physics to better perform across a wide range of spatial scales. Geophys. Res. Abstracts, 16, 7816. [Available online at http://meetingorganizer.copernicus.org/EGU2014/EGU2014-7816.pdf.]

  • Pal, S., T. R. Lee, S. Phelps, and S. F. J. De Wekker, 2014: Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ., 496, 424434, doi:10.1016/j.scitotenv.2014.07.067.

    • Search Google Scholar
    • Export Citation
  • Pochanart, P., H. Akimoto, Y. Kajii, and P. Sukasem, 2003: Carbon monoxide, regional-scale transport, and biomass burning in tropical continental Southeast Asia: Observations in rural Thailand. J. Geophys. Res., 108, 4552, doi:10.1029/2002JD003360.

    • Search Google Scholar
    • Export Citation
  • Popa, M. E., M. Gloor, A. C. Manning, A. Jordan, U. Schultz, F. Haensel, T. Seifert, and M. Heimann, 2010: Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland. Atmos. Meas. Tech., 3, 407427, doi:10.5194/amt-3-407-2010.

    • Search Google Scholar
    • Export Citation
  • Raatikainen, T., A.-P. Hyvärinen, J. Hatakka, T. S. Panwar, R. K. Hooda, V. P. Sharma, and H. Lihavainen, 2014: The effect of boundary layer dynamics on aerosol properties at the Indo-Gangetic plains and at the foothills of the Himalayas. Atmos. Environ., 89, 548555, doi:10.1016/j.atmosenv.2014.02.058.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sahu, L. K., Y. Kondo, Y. Miyazaki, P. Pongkiatkul, and N. T. K. Oanh, 2011: Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J. Geophys. Res., 116, D15302, doi:10.1029/2010JD015563.

    • Search Google Scholar
    • Export Citation
  • Schmid, P., and D. Niyogi, 2012: A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains site. J. Atmos. Oceanic Technol., 29, 316322, doi:10.1175/JTECH-D-11-00118.1.

    • Search Google Scholar
    • Export Citation
  • Segal, M., R. Avissar, M. C. McCumber, and R. A. Pielke, 1988: Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci., 45, 22682292, doi:10.1175/1520-0469(1988)045<2268:EOVEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. A. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., B. Sun, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, doi:10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sun, W.-Y., and Y. Ogura, 1980: Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci., 37, 15581572, doi:10.1175/1520-0469(1980)037<1558:MTEOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, doi:10.1007/BF02430331.

    • Search Google Scholar
    • Export Citation
  • Volz-Thomas, A., H.-W. Patz, N. Houben, S. Konrad, D. Mihelcic, T. Klüpfel, and D. Perner, 2003: Inorganic trace gases and peroxy radicals during BERLIOZ at Pabstthum: An investigation of the photostationary state of NOx and O3. J. Geophys. Res., 108, 8248, doi:10.1029/2001JD001255.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., G. Nedoluha, and J. Teixeira, 2003: An analysis of the frequency and distribution of ducting events in simulated radio occultation measurements based on ECMWF fields. J. Geophys. Res., 108, 4669, doi:10.1029/2002JD003170.

    • Search Google Scholar
    • Export Citation
  • Wang, X. Y., and K. C. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech., 7, 17011709, doi:10.5194/amt-7-1701-2014.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and K. J. Allwine, 1986: Extraterrestrial solar radiation on inclined surfaces. Environ. Software, 1 (3), 164169, doi:10.1016/0266-9838(86)90020-1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Meteor., 38, 11031117, doi:10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, doi:10.1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. R. Hunt, D. J. Carruthers, J. C. H. Fung, and J. F. Barlow, 2013: Structure of the planetary boundary layer over southeast England: Modeling and measurements. J. Geophys. Res. Atmos., 118, 77997818, doi:10.1002/jgrd.50621.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192209, doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yver, C. E., H. D. Graven, D. D. Lucas, P. J. Cameron-Smith, R. F. Keeling, and R. F. Weiss, 2013: Evaluating transport in the WRF Model along the California coast. Atmos. Chem. Phys., 13, 18371852, doi:10.5194/acp-13-1837-2013.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Gao, D. Li, Y. Li, N. Zhang, X. Zhao, and J. Chen, 2014: On the computation of planetary boundary layer height using the bulk Richardson number method. Geosci. Model Dev., 7, 25992611, doi:10.5194/gmd-7-2599-2014.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and F. K. Chow, 2013: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer, 591–654.