Atmospheric Predictors for Annual Maximum Precipitation in North Africa

Bouchra Nasri Canada Research Chair on the Estimation of Hydrometeorological Variables, Eau Terre Environnement Research Centre, Institut National de la Recherche Scientifique, Québec, Québec, Canada

Search for other papers by Bouchra Nasri in
Current site
Google Scholar
PubMed
Close
,
Yves Tramblay Unité Mixte de Recherche Hydrosciences, Institut de Recherche pour le Développement, Montpellier, France

Search for other papers by Yves Tramblay in
Current site
Google Scholar
PubMed
Close
,
Salaheddine El Adlouni Département de Mathématique et de Statistique, Université de Moncton, Moncton, New Brunswick, Canada

Search for other papers by Salaheddine El Adlouni in
Current site
Google Scholar
PubMed
Close
,
Elke Hertig Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Elke Hertig in
Current site
Google Scholar
PubMed
Close
, and
Taha B. M. J. Ouarda Canada Research Chair on the Estimation of Hydrometeorological Variables, Eau Terre Environnement Research Centre, Institut National de la Recherche Scientifique, Québec, Québec, Canada, and Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates

Search for other papers by Taha B. M. J. Ouarda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The high precipitation variability over North Africa presents a major challenge for the population and the infrastructure in the region. The last decades have seen many flood events caused by extreme precipitation in this area. There is a strong need to identify the most relevant atmospheric predictors to model these extreme events. In the present work, the effect of 14 different predictors calculated from NCEP–NCAR reanalysis, with daily to seasonal time steps, on the maximum annual precipitation (MAP) is evaluated at six coastal stations located in North Africa (Larache, Tangier, Melilla, Algiers, Tunis, and Gabès). The generalized extreme value (GEV) B-spline model was used to detect this influence. This model considers all continuous dependence forms (linear, quadratic, etc.) between the covariates and the variable of interest, thus providing a very flexible framework to evaluate the covariate effects on the GEV model parameters. Results show that no single set of covariates is valid for all stations. Overall, a strong dependence between the NCEP–NCAR predictors and MAP is detected, particularly with predictors describing large-scale circulation (geopotential height) or moisture (humidity). This study can therefore provide insights for developing extreme precipitation downscaling models that are tailored for North African conditions.

Corresponding author address: Bouchra Nasri, INRS-ETE, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada. E-mail: bouchra.nasri@ete.inrs.ca

Abstract

The high precipitation variability over North Africa presents a major challenge for the population and the infrastructure in the region. The last decades have seen many flood events caused by extreme precipitation in this area. There is a strong need to identify the most relevant atmospheric predictors to model these extreme events. In the present work, the effect of 14 different predictors calculated from NCEP–NCAR reanalysis, with daily to seasonal time steps, on the maximum annual precipitation (MAP) is evaluated at six coastal stations located in North Africa (Larache, Tangier, Melilla, Algiers, Tunis, and Gabès). The generalized extreme value (GEV) B-spline model was used to detect this influence. This model considers all continuous dependence forms (linear, quadratic, etc.) between the covariates and the variable of interest, thus providing a very flexible framework to evaluate the covariate effects on the GEV model parameters. Results show that no single set of covariates is valid for all stations. Overall, a strong dependence between the NCEP–NCAR predictors and MAP is detected, particularly with predictors describing large-scale circulation (geopotential height) or moisture (humidity). This study can therefore provide insights for developing extreme precipitation downscaling models that are tailored for North African conditions.

Corresponding author address: Bouchra Nasri, INRS-ETE, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada. E-mail: bouchra.nasri@ete.inrs.ca
Save
  • Aissaoui-Fqayeh, I., S. El Adlouni, T. B. M. J. Ouarda, and A. St-Hilaire, 2009: Non-stationary lognormal model development and comparison with the non-stationary GEV model. Hydrol. Sci. J., 54, 11411156, doi:10.1623/hysj.54.6.1141.

    • Search Google Scholar
    • Export Citation
  • Argence, S., D. Lambert, E. Richard, J. P. Chaboureau, and N. Söhne, 2008: Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: A case study. Quart. J. Roy. Meteor. Soc., 134, 17751788, doi:10.1002/qj.314.

    • Search Google Scholar
    • Export Citation
  • Beguería, S., M. Angulo-Martínez, M. Vicente-Serrano, J. I. López-Moreno, and A. El-Kenawy, 2010: Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006. Int. J. Climatol., 31, 21022114, doi:10.1002/joc.2218.

    • Search Google Scholar
    • Export Citation
  • Bliefernicht, J., and A. Bárdossy, 2007: Probabilistic forecast of daily areal precipitation focusing on extreme events. Nat. Hazards Earth Syst. Sci., 7, 263269, doi:10.5194/nhess-7-263-2007.

    • Search Google Scholar
    • Export Citation
  • Buchinsky, M., 1998: The dynamics of changes in the female wage distribution in the USA: A quantile regression approach. J. Appl. Econ., 13, 130, doi:10.1002/(SICI)1099-1255(199801/02)13:1<1::AID-JAE474>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2010: A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrol. Process., 24, 673685, doi:10.1002/hyp.7506.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., and B. C. Hewitson, 2005: Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Res., 28, 95107, doi:10.3354/cr028095.

    • Search Google Scholar
    • Export Citation
  • Chandran, A., G. Basha, and T. B. M. J. Ouarda, 2016: Influence of climate oscillations on temperature and precipitation over the United Arab Emirates. Int. J. Climatol., 36, 225235, doi:10.1002/joc.4339.

    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., and A. Davison, 2005: Generalized additive modeling of sample extremes. J. Roy. Stat. Soc., 54C, 207222, doi:10.1111/j.1467-9876.2005.00479.x.

    • Search Google Scholar
    • Export Citation
  • Coles, G. S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp.

  • Conte, M., A. Giuffrida, and S. Tedesco, 1989: The Mediterranean oscillation: Impact on precipitation and hydrology in Italy. Proc. Conf. on Climate, Water, Helsinki, Finland, Academy of Finland, 121–137.

  • de Boor, C., 2001: A Practical Guide to Splines. Springer, 348 pp.

  • Di Baldassarre, G., A. Montanari, H. Lins, D. Koutsoyiannis, L. Brandimarte, and G. Blöschl, 2010: Flood fatalities in Africa: From diagnosis to mitigation. Geophys. Res. Lett., 37, L22402, doi:10.1029/2010GL045467.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2014: Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol., 34, 581–592, doi:10.1002/joc.3707.

    • Search Google Scholar
    • Export Citation
  • El Adlouni, S., and T. B. M. J. Ouarda, 2009: Joint Bayesian model selection and parameter estimation of the GEV model with covariates using birth–death Markov chain Monte Carlo. Water Resour. Res., 45, W06403, doi:10.1029/2005WR004545.

    • Search Google Scholar
    • Export Citation
  • El Adlouni, S., A. C. Favre, and B. Bobée, 2006: Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods. Comput. Stat. Data Anal., 50, 26852701, doi:10.1016/j.csda.2005.04.018.

    • Search Google Scholar
    • Export Citation
  • El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobée, 2007: Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res., 43, W03410, doi:10.1029/2005WR004545.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philos. Soc., 24, 180190, doi:10.1017/S0305004100015681.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impact studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., 2010: Statistical downscaling of extreme precipitation events using extreme value theory. Extremes, 13, 109132, doi:10.1007/s10687-010-0107-5.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., and A. Hense, 2008: A probabilistic forecast approach for daily precipitation totals. Wea. Forecasting, 23, 659673, doi:10.1175/2007WAF2007051.1.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1996: Markov Chain Monte Carlo in Practice. Chapman and Hall, 512 pp.

  • Hastings, W. K., 1970: Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109, doi:10.1093/biomet/57.1.97.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., A. Paxian, G. Vogt, S. Seubert, H. Paeth, and J. Jacobeit, 2012: Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area. Meteor. Z., 21, 6177, doi:10.1127/0941-2948/2012/0271.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., S. Seubert, A. Paxian, G. Vogt, H. Paeth, and J. Jacobeit, 2013: Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theor. Appl. Climatol., 111, 120, doi:10.1007/s00704-012-0639-5.

    • Search Google Scholar
    • Export Citation
  • Hofer, M., B. Marzeion, and T. Mölg, 2012: Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Climate Dyn., 39, 19691980, doi:10.1007/s00382-012-1501-2.

    • Search Google Scholar
    • Export Citation
  • Hundecha, Y., A. St-Hilaire, T. B. M. J. Ouarda, S. El Adlouni, and P. Gachon, 2008: A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada. J. Appl. Meteor. Climatol., 47, 27452759, doi:10.1175/2008JAMC1665.1.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., and B. E. James, 2006: Climatology models for extreme hurricane winds near the United States. J. Climate, 19, 32203236, doi:10.1175/JCLI3913.1.

    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1960: The application of electronic computers to factor analysis. Educ. Psychol. Meas., 20, 141151, doi:10.1177/001316446002000116.

    • Search Google Scholar
    • Export Citation
  • Kallache, M., M. Vrac, P. Naveau, and P. A. Michelangeli, 2011: Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res., 116, D05113, doi:10.1029/2010JD014892.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khaliq, M. N., and T. B. M. J. Ouarda, 2007: On the critical values of the standard normal homogeneity test (SNHT). Int. J. Climatol., 27, 681687, doi:10.1002/joc.1438.

    • Search Google Scholar
    • Export Citation
  • Khaliq, M. N., T. B. M. J. Ouarda, J. C. Ondo, P. Gachon, and B. Bobée, 2006: Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol., 329, 534552, doi:10.1016/j.jhydrol.2006.03.004.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., M. Christoph, and P. Speth, 2003: Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteor. Atmos. Phys., 83, 6788, doi:10.1007/s00703-002-0561-y.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Maraun, D., and Coauthors, 2010a: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. W. Rust, and T. Osborn, 2010b: Synoptic airflow and UK daily precipitation extremes. Extremes, 13, 133153, doi:10.1007/s10687-010-0102-x.

    • Search Google Scholar
    • Export Citation
  • Martín-Vide, J., and J. A. Lopez-Bustins, 2006: The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol., 26, 14551475, doi:10.1002/joc.1388.

    • Search Google Scholar
    • Export Citation
  • Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 10871092, doi:10.1063/1.1699114.

    • Search Google Scholar
    • Export Citation
  • Nasri, B., S. El Adlouni, and B. M. J. T. Ouarda, 2013: Bayesian estimation for GEV-B-spline model. Open J. Stat., 3, 118128, doi:10.4236/ojs.2013.32013.

    • Search Google Scholar
    • Export Citation
  • Olsen, J. R., J. R. Stedinger, N. C. Matalas, and E. Z. Stakhiv, 1999: Climate variability and flood frequency estimation for the upper Mississippi and lower Missouri Rivers. J. Amer. Water Resour. Assoc., 35, 15091524, doi:10.1111/j.1752-1688.1999.tb04234.x.

    • Search Google Scholar
    • Export Citation
  • Ouachani, R., Z. Bargaoui, and T. B. M. J. Ouarda, 2013: Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda basin. Int. J. Climatol., 33, 5876, doi:10.1002/joc.3407.

    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., and S. El Adlouni, 2011: Bayesian nonstationary frequency analysis of hydrological variables. J. Amer. Water Resour. Assoc., 47, 496505, doi:10.1111/j.1752-1688.2011.00544.x.

    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Stat. Soc., 28C, 126135, doi:10.2307/2346729.

  • Poncet, J., 1970: La “catastrophe” climatique de l’automne 1969 en Tunisie. Ann. Géogr., 79, 581595, doi:10.3406/geo.1970.15175.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Developments in Atmospheric Sciences, Vol. 17, Elsevier, 444 pp.

  • Raftery, A. E., and S. M. Lewis, 1992: Comment: One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Stat. Sci., 7, 493497, doi:10.1214/ss/1177011143.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., and S. M. Lewis, 1995: The number of iterations, convergence diagnostics and generic Metropolis algorithms. Practical Markov Chain Monte Carlo, W. R. Gilks, D. J. Spiegelhalter, and S. Richardson, Eds., Chapman and Hall, 115–130.

    • Search Google Scholar
    • Export Citation
  • Reiser, H., and H. Kutiel, 2011: Rainfall uncertainty in the Mediterranean: Time series, uncertainty, and extreme events. Theor. Appl. Climatol., 104, 357375, doi:10.1007/s00704-010-0345-0.

    • Search Google Scholar
    • Export Citation
  • Saidi, M. E. M., L. Daoudi, M. E. H. Aresmouk, and A. Blali, 2003: Rôle du milieu physique dans l’amplification des crues en milieu montagne montagnard: Exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc). Sécheresse, 14, 107114.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 17161733, doi:10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, doi:10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., E. Xoplaki, D. Maraun, F. G. Kuglitsch, H. Wanner, and J. Luterbacher, 2010: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat. Hazards Earth Syst. Sci., 10, 10371050, doi:10.5194/nhess-10-1037-2010.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., L. Neppel, and J. Carreau, 2011: Climatic covariates for the frequency analysis of heavy rainfall events in the Mediterranean region. Nat. Hazards Earth Syst. Sci., 11, 24632468, doi:10.5194/nhess-11-2463-2011.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., W. Badi, F. Driouech, S. El Adlouni, L. Neppel, and E. Servat, 2012a: Climate change impacts on extreme precipitation in Morocco. Global Planet. Change, 82–83, 104114, doi:10.1016/j.gloplacha.2011.12.002.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., L. Neppel, J. Carreau, and E. Sanchez-Gomez, 2012b: Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate. Hydrol. Processes, 26, 39343944, doi:10.1002/hyp.8417.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., S. El Adlouni, and E. Servat, 2013: Trends and variability in extreme precipitation indices over North Africa. Nat. Hazards Earth Syst. Sci., 13, 32353248, doi:10.5194/nhess-13-3235-2013.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, J. I. López-Moreno, A. M. El Kenawy, and M. Angulo-Martínez, 2009: Daily atmospheric circulation events and extreme precipitation risk in northeast Spain. Role of the North Atlantic Oscillation, the western Mediterranean oscillation, and the Mediterranean oscillation. J. Geophys. Res., 114, D08106, doi:10.1029/2008JD011492.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., and P. Naveau, 2007: Stochastic downscaling of precipitation: From dry events to heavy rainfalls. Water Resour. Res., 43, W07402, doi:10.1029/2006WR005308.

    • Search Google Scholar
    • Export Citation
  • Wald, A., and J. Wolfowitz, 1940: On a test whether two samples are from the same population. Ann. Math. Stat., 11, 147162, doi:10.1214/aoms/1177731909.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation—Concepts and studies. Surv. Geophys., 22, 321382, doi:10.1023/A:1014217317898.

    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., S. Halldin, and C. Y. Xu, 2005: Statistical precipitation downscaling in central Sweden with the analogue method. J. Hydrol., 306, 174190, doi:10.1016/j.jhydrol.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, doi:10.2307/3001968.

  • Xoplaki, E., F. J. González-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23, 6378, doi:10.1007/s00382-004-0422-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 867 590 26
PDF Downloads 189 63 3