The Extrapolation of Near-Surface Wind Speeds under Stable Stratification Using an Equilibrium-Based Single-Column Model Approach

Michael Optis School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Michael Optis in
Current site
Google Scholar
PubMed
Close
and
Adam Monahan School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Adam Monahan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Classical approaches to modeling the near-surface (i.e., below 200 m) wind profile are equilibrium based (i.e., no time evolution) and either lack a physical basis or are based on surface-layer physics. In this study, the limits of the equilibrium approach in stable stratification are further tested by applying the method within a more physically comprehensive single-column model (SCM) framework. The SCM considered here is a highly idealized momentum and temperature budget model that uses a range of different parameterizations of turbulent fluxes. A 10-yr observational dataset obtained from the 213-m Cabauw tower in the Netherlands is used to drive the SCM and to assess model performance. Results from this study demonstrate several limitations of this SCM-based equilibrium approach. The existence of two physically meaningful equilibrium solutions for a given value of the surface turbulent temperature flux (used as a lower boundary in the SCM) generally results in either a tendency to underestimate stratification or the breakdown of the model because of runaway cooling and collapsed turbulence. Different representations of the geostrophic wind profile accounting for baroclinic effects caused by the strong land–sea temperature gradient at Cabauw are shown to have only a modest influence on the mean wind profile. The local internal boundary layer (IBL) at Cabauw results in a strong tendency for the SCM to overestimate wind speeds in weakly to moderately stable conditions. In very stable conditions (where the IBL influence was low), the equilibrium approach remained limited because of its inability to account for time-evolving phenomena such as the inertial oscillation and the low-level jet.

Corresponding author address: Michael Optis, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3065, STN CSC, Victoria, BC V8W 3V6, Canada. E-mail: optism@gmail.com

Abstract

Classical approaches to modeling the near-surface (i.e., below 200 m) wind profile are equilibrium based (i.e., no time evolution) and either lack a physical basis or are based on surface-layer physics. In this study, the limits of the equilibrium approach in stable stratification are further tested by applying the method within a more physically comprehensive single-column model (SCM) framework. The SCM considered here is a highly idealized momentum and temperature budget model that uses a range of different parameterizations of turbulent fluxes. A 10-yr observational dataset obtained from the 213-m Cabauw tower in the Netherlands is used to drive the SCM and to assess model performance. Results from this study demonstrate several limitations of this SCM-based equilibrium approach. The existence of two physically meaningful equilibrium solutions for a given value of the surface turbulent temperature flux (used as a lower boundary in the SCM) generally results in either a tendency to underestimate stratification or the breakdown of the model because of runaway cooling and collapsed turbulence. Different representations of the geostrophic wind profile accounting for baroclinic effects caused by the strong land–sea temperature gradient at Cabauw are shown to have only a modest influence on the mean wind profile. The local internal boundary layer (IBL) at Cabauw results in a strong tendency for the SCM to overestimate wind speeds in weakly to moderately stable conditions. In very stable conditions (where the IBL influence was low), the equilibrium approach remained limited because of its inability to account for time-evolving phenomena such as the inertial oscillation and the low-level jet.

Corresponding author address: Michael Optis, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3065, STN CSC, Victoria, BC V8W 3V6, Canada. E-mail: optism@gmail.com
Save
  • Baas, P., F. C. Bosveld, G. Lenderink, E. van Meijgaard, and A. A. M. Holtslag, 2010: How to design single-column model experiments for comparison with observed nocturnal low-level jets. Quart. J. Roy. Meteor. Soc., 136, 671684, doi: 10.1002/qj.592.

    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van den Brink, and A. A. M. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Belair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson, 1999: An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor. Climatol., 38, 14991518, doi:10.1175/1520-0450(1999)038<1499:AEOLVN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1982: The derivation of fluxes from profiles in perturbed areas. Bound.-Layer Meteor., 24, 3555, doi:10.1007/BF00121798.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1999: The role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M Holtslag and P. G. Duynkerke, Eds., North Holland, 287–304.

  • Bosveld, F. C., P. Baas, E. van Meijgaard, E. I. F. de Bruijn, G.-J. Steeneveld, and A. A. M. Holtslag, 2014a: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part A: Case selection and set-up. Bound.-Layer Meteor., 152, 133156, doi:10.1007/s10546-014-9917-3.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and Coauthors, 2014b: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, doi:10.1007/s10546-014-9919-1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Santos, 2012: A sensitivity study of the WRF Model in wind simulation for an area of high wind energy. Environ. Modell. Software, 33, 2334, doi:10.1016/j.envsoft.2012.01.019.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Santos, 2014: Sensitivity of the WRF Model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl. Energy, 135, 234246, doi:10.1016/j.apenergy.2014.08.082.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Deppe, A. J., W. A. Gallus Jr., and E. S. Takle, 2013: A WRF ensemble for improved wind speed forecasts at turbine height. Wea. Forecasting, 28, 212228, doi:10.1175/WAF-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting Model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, doi:10.1002/we.1555.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119, 324341, doi:10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: Integrated Forecast System documentation—Cy41r1, part IV: Physical processes, ECMWF Tech. Doc., 210 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2015/9211-part-iv-physical-processes.pdf.]

  • Edwards, J. M., R. J. Beare, and A. J. Lapworth, 2006: Simulation of the observed evening transition and nocturnal boundary layers: Single-column modelling. Quart. J. Roy. Meteor. Soc., 132, 6180, doi:10.1256/qj.05.63.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2013: Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Springer, 150 pp.

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 335 pp.

  • Gibbs, J. A., E. Fedorovich, and A. Shapiro, 2015: Revisiting surface heat-flux and temperature boundary conditions in models of stably stratified boundary-layer flows. Bound.-Layer Meteor., 154, 171187, doi:10.1007/s10546-014-9970-y.

    • Search Google Scholar
    • Export Citation
  • Giebel, G., R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl, 2011: The state-of-the-art in short term prediction of wind power: A literature overview. 2nd ed. ANEMOS, 109 pp. [Available online at http://orbit.dtu.dk/files/5277161/GiebelEtAl-StateOfTheArtInShortTermPrediction_ANEMOSplus_2011 (2).pdf.]

  • Holtslag, A. A. M., 2014: Introduction to the third GEWEX Atmospheric Boundary Layer Study (GABLS3). Bound.-Layer Meteor., 152, 127132, doi:10.1007/s10546-014-9931-5.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kleczek, M. A., G.-J. Steeneveld, and A. A. M. Holtslag, 2014: Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up. Bound.-Layer Meteor., 152, 213243, doi:10.1007/s10546-014-9925-3.

    • Search Google Scholar
    • Export Citation
  • KNMI, 2013: Cabauw Experimental Site for Atmospheric Research Database, Royal Netherlands Meteorological Institute. [Available online at http://www.cesar-database.nl.]

  • Lange, M., and U. Focken, 2005: Physical Approach to Short-Term Wind Power Prediction. Springer, 167 pp.

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105, 351363, doi:10.1023/A:1019964720989.

    • Search Google Scholar
    • Export Citation
  • Marjanovic, N., S. Wharton, and F. K. Chow, 2014: Investigation of model parameters for high-resolution wind energy forecasting: Case studies over simple and complex terrain. J. Wind Eng. Ind. Aerodyn., 134, 1024, doi:10.1016/j.jweia.2014.08.007.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., T. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, doi:10.1175/JAS-D-14-0311.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulence mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187. [Available online at http://mcnaughty.com/keith/papers/Monin_and_Obukhov_1954.pdf.]

    • Search Google Scholar
    • Export Citation
  • Optis, M., A. Monahan, and F. C. Bosveld, 2014: Moving beyond Monin–Obukhov similarity theory in modelling wind-speed profiles in the lower atmospheric boundary layer under stable stratification. Bound.-Layer Meteor., 153, 497514, doi:10.1007/s10546-014-9953-z.

    • Search Google Scholar
    • Export Citation
  • Optis, M., A. Monahan, and F. C. Bosveld, 2016: Limitations and breakdown of Monin–Obukhov similarity theory for wind profile extrapolation under stable stratification. Wind Energy, doi:10.1002/we.1883, in press.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rostkier-Edelstein, D., and J. P. Hacker, 2010: The roles of surface-observation ensemble assimilation and model complexity for nowcasting of PBL profiles: A factor separation analysis. Wea. Forecasting, 25, 16701690, doi:10.1175/2010WAF2222435.1.

    • Search Google Scholar
    • Export Citation
  • Shimada, S., T. Ohsawa, S. Chikaoka, and K. Kozai, 2011: Accuracy of the wind speed profile in the lower PBL as simulated by the WRF Model. SOLA, 7, 109112, doi:10.2151/sola.2011-028.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2012: A study of the stable boundary layer based on a single-column k-theory model. Bound.-Layer Meteor., 142, 3353, doi:10.1007/s10546-011-9654-9.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2014: Modelling of the evolving stable boundary layer. Bound.-Layer Meteor., 151, 407428, doi:10.1007/s10546-013-9893-z.

    • Search Google Scholar
    • Export Citation
  • Sterk, H. A. M., G. J. Steeneveld, and A. A. M. Holtslag, 2013: The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J. Geophys. Res. Atmos., 118, 11991217, doi:10.1002/jgrd.50158.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic, 670 pp.

  • Sukoriansky, S., 2008: Implementation of the quasi-normal scale elimination (QNSE) model of stably stratified turbulence in WRF: Developmental Testbed Center Visit Rep., 8 pp. [Available online at http://www.dtcenter.org/visitors/reports_07/Sukoriansky_report.pdf.]

  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177206, doi:10.1007/s10546-011-9611-7.

    • Search Google Scholar
    • Export Citation
  • Tijm, A. B. C., A. A. M. Holtslag, and A. J. van Delden, 1999: Observations and modeling of the sea breeze with the return current. Mon. Wea. Rev., 127, 625640, doi:10.1175/1520-0493(1999)127<0625:OAMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. SMHI HIRLAM-5 Project Tech. Doc., 144 pp. [Available online at http://hirlam.org/index.php/component/docman/doc_view/270-hirlam-scientific-documentation-december-2002?Itemid=70.]

  • van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274, doi:10.1007/s10494-007-9094-2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, doi:10.1175/2010JAS3289.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012a: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012b: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, doi:10.1175/JAS-D-12-064.1.

    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., J. M. M. Donda, H. J. H. Clercx, F. C. Bosveld, and B. J. H. van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, doi:10.1175/JAS-D-14-0140.1.

    • Search Google Scholar
    • Export Citation
  • Verkaik, J. W., and A. A. M. Holtslag, 2007: Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited. Bound.-Layer Meteor., 122, 701719, doi:10.1007/s10546-006-9121-1.

    • Search Google Scholar
    • Export Citation
  • Weng, W., and P. A. Taylor, 2003: On modelling the one-dimensional atmospheric boundary layer. Bound.-Layer Meteor., 107, 371400, doi:10.1023/A:1022126511654.

    • Search Google Scholar
    • Export Citation
  • Weng, W., and P. Taylor, 2006: Modelling the one-dimensional stable boundary layer with an E–ℓ turbulence closure scheme. Bound.-Layer Meteor., 118, 305323, doi:10.1007/s10546-005-2774-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 313 102 11
PDF Downloads 155 31 5