Correlations of Multispectral Infrared Indicators and Applications in the Analysis of Developing Convective Clouds

Qiong Wu Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Qiong Wu in
Current site
Google Scholar
PubMed
Close
,
Hong-Qing Wang Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Hong-Qing Wang in
Current site
Google Scholar
PubMed
Close
,
Yi-Zhou Zhuang Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yi-Zhou Zhuang in
Current site
Google Scholar
PubMed
Close
,
Yin-Jing Lin National Meteorological Center, China Meteorological Administration, Beijing, China

Search for other papers by Yin-Jing Lin in
Current site
Google Scholar
PubMed
Close
,
Yan Zhang Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yan Zhang in
Current site
Google Scholar
PubMed
Close
, and
Sai-Sai Ding Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Sai-Sai Ding in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three infrared (IR) indicators were included in this study: the 10.8-μm brightness temperature (BT10.8), the BT difference between 12.0 and 10.8 μm (BTD12.0–10.8), and the BT difference between 6.7 and 10.8 μm (BTD6.7–10.8). Correlations among these IR indicators were investigated using MTSAT-1R images for summer 2007 over East Asia. Temporal, spatial, and numerical frequency distributions were used to represent the correlations. The results showed that large BTD12.0–10.8 values can be observed in the growth of cumulus congestus and associated with the boundary of different terrain where convection was more likely to generate and develop. The results also showed that numerical correlation between any two IR indicators could be expressed by two-dimensional histograms (HT2D). Because of differences in the tropopause heights and in the temperature and water vapor fields, the shapes of the HT2Ds varied with latitude and the type of underlying surface. After carefully analyzing the correlations among the IR indicators, a conceptual model of the convection life cycle was constructed according to these HT2Ds. A new cloud convection index (CCI) was defined with the combination of BTD12.0–10.8 and BTD6.7–10.8 on the basis of the conceptual model. The preliminary test results demonstrated that CCI could effectively identify convective clouds. CCI value and its time trend could reflect the growth or decline of convective clouds.

Corresponding author address: Hong-Qing Wang, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. E-mail: hqwang@pku.edu.cn

Abstract

Three infrared (IR) indicators were included in this study: the 10.8-μm brightness temperature (BT10.8), the BT difference between 12.0 and 10.8 μm (BTD12.0–10.8), and the BT difference between 6.7 and 10.8 μm (BTD6.7–10.8). Correlations among these IR indicators were investigated using MTSAT-1R images for summer 2007 over East Asia. Temporal, spatial, and numerical frequency distributions were used to represent the correlations. The results showed that large BTD12.0–10.8 values can be observed in the growth of cumulus congestus and associated with the boundary of different terrain where convection was more likely to generate and develop. The results also showed that numerical correlation between any two IR indicators could be expressed by two-dimensional histograms (HT2D). Because of differences in the tropopause heights and in the temperature and water vapor fields, the shapes of the HT2Ds varied with latitude and the type of underlying surface. After carefully analyzing the correlations among the IR indicators, a conceptual model of the convection life cycle was constructed according to these HT2Ds. A new cloud convection index (CCI) was defined with the combination of BTD12.0–10.8 and BTD6.7–10.8 on the basis of the conceptual model. The preliminary test results demonstrated that CCI could effectively identify convective clouds. CCI value and its time trend could reflect the growth or decline of convective clouds.

Corresponding author address: Hong-Qing Wang, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. E-mail: hqwang@pku.edu.cn
Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53, 28032812, doi:10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., W. L. Smith, H. E. Revercomb, and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Mon. Wea. Rev., 118, 23772388, doi:10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502517, doi:10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, and D. D. Fenn, 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113, 769781, doi:10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. MacKenzie, K. M. Bedka, and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. W. Nielsen, 1993: Radiosonde penetration of an undilute cumulonimbus anvil. Mon. Wea. Rev., 121, 16881702, doi:10.1175/1520-0493(1993)121<1688:RPOAUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chesters, D., L. W. Uccellini, and W. D. Robinson, 1983: Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) “split window” channels. J. Climate Appl. Meteor., 22, 725743, doi:10.1175/1520-0450(1983)022<0725:LLWVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710717, doi:10.1175/1520-0450(1974)013<0710:DOMIHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, doi:10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donovan, M. F., E. R. Williams, C. Kessinger, G. Blackburn, P. H. Herzegh, R. L. Bankert, S. Miller, and F. R. Mosher, 2008: The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations. J. Appl. Meteor. Climatol., 47, 164184, doi:10.1175/2007JAMC1471.1.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., and C. Cartalis, 2001: Monitoring mesoscale convective cloud systems associated with heavy storms using Meteosat imagery. J. Appl. Meteor., 40, 491512, doi:10.1175/1520-0450(2001)040<0491:MMCCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritz, S., and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98, 22 95922 967, doi:10.1029/93JD01617.

    • Search Google Scholar
    • Export Citation
  • Guillory, A. R., G. J. Jedlovec, and H. E. Fuelberg, 1993: A technique for deriving column-integrated water content using VAS split-window data. J. Appl. Meteor., 32, 12261241, doi:10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen, 2010: The definition of GOES infrared lightning initiation interest fields. J. Appl. Meteor. Climatol., 49, 25272543, doi:10.1175/2010JAMC2575.1.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, A. K. Heidinger, M. J. Pavolonis, B. A. Baum, and S. E. Platnick, 2010: Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 μm window bands. J. Geophys. Res., 115, D20214, doi:10.1029/2010JD014004.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Minnis, D. Doelling, J. K. Ayers, and S. Sun-Mack, 2012: Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences. J. Geophys. Res., 117, D06207, doi:10.1029/2011JD016652.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region. J. Meteor. Soc. Japan, 63, 8899.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987a: A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res., 92, 39914000, doi:10.1029/JD092iD04p03991.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987b: An instantaneous delineation of convective rainfall areas using split window data of NOAA-7 AVHRR. J. Meteor. Soc. Japan, 65, 469481.

    • Search Google Scholar
    • Export Citation
  • Jin, H., and S. L. Nasiri, 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol., 53, 10121027, doi:10.1175/JAMC-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Adv. Space Res., 19, 511514, doi:10.1016/S0273-1177(97)00063-X.

    • Search Google Scholar
    • Export Citation
  • Lattanzio, A., P. D. Watts, and Y. Govaerts, 2006: Activity report on physical interpretation of warm water vapour pixels. EUMETSAT Tech. Memo. 14, 43 pp. [Available online at http://www.eumetsat.int/website/home/search/index.html?pState=1&search=Activity+report+on+physical+interpretation+of+warm+water+vapour+pixels&pState=1&sg=T1BT.]

  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, doi:10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., L. Grasso, J. F. Dostalek, and J. Kerkmann, 2014: Use of the GOES-R split-window difference to diagnose deepening low-level water vapor. J. Appl. Meteor. Climatol., 53, 20052016, doi:10.1175/JAMC-D-14-0010.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthee, R., and J. R. Mecikalski, 2013: Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds. J. Geophys. Res. Atmos., 118, 65806592, doi:10.1002/jgrd.50485.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bull. Amer. Meteor. Soc., 88, 15891607, doi:10.1175/BAMS-88-10-1589.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. J. Appl. Meteor. Climatol., 49, 521534, doi:10.1175/2009JAMC2344.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., X. Li, L. D. Carey, E. W. McCaul Jr., and T. A. Coleman, 2013: Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation. Mon. Wea. Rev., 141, 5574, doi:10.1175/MWR-D-12-00120.1.

    • Search Google Scholar
    • Export Citation
  • Melani, S., E. Cattani, F. Torricella, and V. Levizzani, 2003: Characterization of plumes on top of deep convective storm using AVHRR imagery and radiative transfer simulations. Atmos. Res., 67–68, 485499, doi:10.1016/S0169-8095(03)00061-9.

    • Search Google Scholar
    • Export Citation
  • Merk, D., and T. Zinner, 2013: Detection of convective initiation using Meteosat SEVIRI: Implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM. Atmos. Meas. Tech., 6, 19031918, doi:10.5194/amt-6-1903-2013.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2012: Simulations of infrared radiances over a deep convective cloud system observed during TC4: Potential for enhancing nocturnal ice cloud retrievals. Remote Sens., 4, 30223054, doi:10.3390/rs4103022.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300, doi:10.1175/1520-0450(1981)020<0288:ROSBTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116, D12201, doi:10.1029/2010JD015462.

    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., L. W. Uccellini, A. Mostek, and D. A. Keyser, 1984: Delineating mid-and low-level water vapor patterns in pre-convective environments using VAS moisture channels. Mon. Wea. Rev., 112, 21782198, doi:10.1175/1520-0493(1984)112<2178:DMALLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1989: Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens., 10, 751761, doi:10.1080/01431168908903916.

    • Search Google Scholar
    • Export Citation
  • Price, J. C., 1984: Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res., 89, 72317237, doi:10.1029/JD089iD05p07231.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114, doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123150, doi:10.1080/01431168808954841.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. Van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., R. M. Rabin, and P. K. Wang, 2007: Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res., 83, 505518, doi:10.1016/j.atmosres.2005.09.015.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., D. T. Lindsey, R. M. Rabin, P. K. Wang, and A. Demeterová, 2008: Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite observations and radiative transfer model simulations. Atmos. Res., 89, 170180, doi:10.1016/j.atmosres.2007.11.031.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. Šťástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, doi:10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, W. F. Feltz, K. M. Bedka, M. J. Pavolonis, and A. K. Heidinger, 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, doi:10.1175/2010JAMC2496.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., D. C. Hartung, W. F. Feltz, L. M. Cronce, and V. Lakshmanan, 2013: A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. J. Atmos. Oceanic Technol., 30, 510525, doi:10.1175/JTECH-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, and W. F. Feltz, 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol., 53, 506520, doi:10.1175/JAMC-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szejwach, G., 1982: Determination of semi-transparent cirrus cloud temperature from infrared radiances: Application to Meteosat. J. Appl. Meteor., 21, 384393, doi:10.1175/1520-0450(1982)021<0384:DOSTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., L. Van de Berg, and J. Schmetz, 1997: Warm water vapour pixels over high clouds as observed by Meteosat. Contrib. Atmos. Phys., 70, 1521.

    • Search Google Scholar
    • Export Citation
  • Wang, C. C., G. T. J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 16061629, doi:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C. C., G. T. J. Chen, and R. E. Carbone, 2005: Variability of warm-season cloud episodes over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 133, 14781500, doi:10.1175/MWR2928.1.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, doi:10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, doi:10.1016/j.atmosres.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Xu, W., R. F. Adler, and N.-Y. Wang, 2013: Improving geostationary satellite rainfall estimates using lightning observations: Underlying lightning–rainfall–cloud relationships. J. Appl. Meteor. Climatol., 52, 213229, doi:10.1175/JAMC-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., R. F. Adler, and N.-Y. Wang, 2014: Combining satellite infrared and lightning information to estimate warm-season convective and stratiform rainfall. J. Appl. Meteor. Climatol., 53, 180199, doi:10.1175/JAMC-D-13-069.1.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210, doi:10.1007/s00703-008-0290-y.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., C. Forster, E. D. Coning, and H. D. Betz, 2013: Validation of the Meteosat storm detection and nowcasting system Cb-TRAM with lightning network data–Europe and South Africa. Atmos. Meas. Tech., 6, 15671583, doi:10.5194/amt-6-1567-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 91 21
PDF Downloads 163 51 5