Numerical Study of the Daytime Planetary Boundary Layer over an Idealized Urban Area: Influence of Surface Properties, Anthropogenic Heat Flux, and Geostrophic Wind Intensity

Serena Falasca Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy

Search for other papers by Serena Falasca in
Current site
Google Scholar
PubMed
Close
,
Franco Catalano ENEA, Rome, Italy

Search for other papers by Franco Catalano in
Current site
Google Scholar
PubMed
Close
, and
Monica Moroni Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Rome, Italy

Search for other papers by Monica Moroni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulations of an idealized diurnal urban heat island are performed using the Weather Research and Forecasting Model. The surface energy balance over an inhomogeneous terrain is solved considering the anthropogenic heat contribution and the differences of thermal and mechanical properties between urban and rural surfaces. Several cases are simulated together with a reference case, considering different values of the control parameters: albedo, thermal inertia, roughness length, anthropogenic heat emission, and geostrophic wind intensity. Spatial distributions of second-moment statistics, including the turbulent kinetic energy (TKE) budget, are analyzed to characterize the structure of the planetary boundary layer (PBL). The effect of each control parameter value on the turbulent properties of the PBL is investigated with respect to the reference case. For all of the analyzed cases, the primary source of TKE is the buoyancy in the lower half of the PBL, the shear in the upper half, and the turbulent transport term at the top. The vertical advection of TKE is significant in the upper half of the PBL. The control parameters significantly influence the shape of the profiles of the transport and shear terms in the TKE budget. Bulk properties of the PBL via proper scaling are compared with literature data. A log-linear relationship between the aspect ratio of the heat island and the Froude number is confirmed. For the first time, the effect of relevant surface control parameters and the geostrophic wind intensity on the bulk and turbulent properties of the PBL is systematically investigated at high resolution.

Additional affiliation: Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Rome, Italy.

Corresponding author address: S. Falasca, Department of Physics, University of L’Aquila, via Vetoio, 67010 Coppito, L’Aquila, Italy. E-mail: serena.falasca1@univaq.it

Abstract

Large-eddy simulations of an idealized diurnal urban heat island are performed using the Weather Research and Forecasting Model. The surface energy balance over an inhomogeneous terrain is solved considering the anthropogenic heat contribution and the differences of thermal and mechanical properties between urban and rural surfaces. Several cases are simulated together with a reference case, considering different values of the control parameters: albedo, thermal inertia, roughness length, anthropogenic heat emission, and geostrophic wind intensity. Spatial distributions of second-moment statistics, including the turbulent kinetic energy (TKE) budget, are analyzed to characterize the structure of the planetary boundary layer (PBL). The effect of each control parameter value on the turbulent properties of the PBL is investigated with respect to the reference case. For all of the analyzed cases, the primary source of TKE is the buoyancy in the lower half of the PBL, the shear in the upper half, and the turbulent transport term at the top. The vertical advection of TKE is significant in the upper half of the PBL. The control parameters significantly influence the shape of the profiles of the transport and shear terms in the TKE budget. Bulk properties of the PBL via proper scaling are compared with literature data. A log-linear relationship between the aspect ratio of the heat island and the Froude number is confirmed. For the first time, the effect of relevant surface control parameters and the geostrophic wind intensity on the bulk and turbulent properties of the PBL is systematically investigated at high resolution.

Additional affiliation: Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Rome, Italy.

Corresponding author address: S. Falasca, Department of Physics, University of L’Aquila, via Vetoio, 67010 Coppito, L’Aquila, Italy. E-mail: serena.falasca1@univaq.it
Save
  • Akbari, H., M. Pomerantz, and H. Taha, 2001: Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy, 70, 295310, doi:10.1016/S0038-092X(00)00089-X.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burridge, D. M., and A. J. Gadd, 1975: The Meteorological Office operational 10-level numerical weather prediction model. British Meteorological Office Tech. Notes 12 and 48, 57 pp.

  • Catalano, F., and A. Cenedese, 2010: High-resolution numerical modeling of thermally driven slope winds in a valley with strong capping. J. Appl. Meteor. Climatol., 49, 18591880, doi:10.1175/2010JAMC2385.1.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model. Bound.-Layer Meteor., 137, 4975, doi:10.1007/s10546-010-9518-8.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., A. Cenedese, S. Falasca, and M. Moroni, 2011: High resolution numerical and experimental modeling of the urban heat island circulation. Proc. VII Int. Symp. on Stratified Flows, Rome, Italy, Sapienza University of Rome. [Available from F. Catalano, ENEA, Casaccia, Via Anguillarese, 301, 00123 Santa Maria di Galeria - Roma, Italy.]

  • Catalano, F., A. Cenedese, S. Falasca, and M. Moroni, 2012a: Numerical and experimental simulations of local winds. National Security and Human Health Implications of Climate Change, H. Fernando, Z. Klaić, and J. L. McCulley, Eds., Springer, 199–218.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., M. Moroni, V. Dore, and A. Cenedese, 2012b: An alternative scaling for unsteady penetrative free convection. J. Geophys. Res., 117, D18102, doi:10.1029/2012JD018229.

    • Search Google Scholar
    • Export Citation
  • Cenedese, A., and P. Monti, 2003: Interaction between an inland urban heat island and a sea-breeze flow: A laboratory study. J. Appl. Meteor., 42, 15691583, doi:10.1175/1520-0450(2003)042<1569:IBAIUH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, X.-L., H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, 2006: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ., 104, 133146, doi:10.1016/j.rse.2005.11.016.

    • Search Google Scholar
    • Export Citation
  • Clarke, J. F., and J. L. McElroy, 1974: Effects of ambient meteorology and urban morphological features on the vertical temperature structure over cities. Preprint, Air Pollution Control Association 67th Annual Meeting, Denver, CO, Air Pollution Control Association, Paper 74-73. [Available from J. F. Clarke, MD-80, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.]

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, doi:10.1029/JC083iC04p01889.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • European Environment Agency, 2014: Global megatrend 2: Towards a more urban world. Assessment of global megatrends—An update, European Environment Agency Rep., 20 pp. [Available online at http://www.eea.europa.eu/publications/global-megatrends-update-2/at_download/file.]

  • Falasca, S., M. Moroni, and A. Cenedese, 2013: Laboratory simulations of an urban heat island in a stratified atmospheric boundary layer. J. Visualization, 16, 3945, doi:10.1007/s12650-012-0150-1.

    • Search Google Scholar
    • Export Citation
  • Faust, K. M., 1981: Modelldarstellung von Wärmeinselströmungen durch konvektionsstrahlen. Ph.D. dissertation, Universität Karlsruhe, 144 pp.

  • Filho, E. P. M., M. Cassol, H. A. Caram, and U. Rizza, 2013: The vertical structure of tropical urban heat island with LES. Amer. J. Environ. Eng., 3, 2431, doi:10.5923/j.ajee.20130301.05.

    • Search Google Scholar
    • Export Citation
  • Giovannini, L., D. Zardi, and M. de Franceschi, 2011: Analysis of the urban thermal fingerprint of the city of Trento in the Alps. J. Appl. Meteor. Climatol., 50, 11451165, doi:10.1175/2010JAMC2613.1.

    • Search Google Scholar
    • Export Citation
  • Giovannini, L., D. Zardi, M. de Franceschi, and F. Chen, 2014: Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol., 34, 11111131, doi:10.1002/joc.3750.

    • Search Google Scholar
    • Export Citation
  • Godowitch, J. M., J. K. S. Ching, and J. F. Clarke, 1987: Spatial variation of the evolution and structure of the urban boundary layer. Bound.-Layer Meteor., 38, 249272, doi:10.1007/BF00122447.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, doi:10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., G. Pigeon, and V. Masson, 2008: Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach. Meteor. Atmos. Phys., 102, 223241, doi:10.1007/s00703-008-0329-0.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteor. Climatol., 49, 889901, doi:10.1175/2009JAMC2195.1.

    • Search Google Scholar
    • Export Citation
  • Hinkel, K. M., F. E. Nelson, A. E. Klene, and J. H. Bell, 2003: The urban heat island in winter at Barrow, Alaska. Int. J. Climatol., 23, 18891905, doi:10.1002/joc.971.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651659, doi:10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristof, G., N. Rácz, and M. Balogh, 2009: Adaptation of pressure based CFD solvers for mesoscale atmospheric problems. Bound.-Layer Meteor., 131, 85103, doi:10.1007/s10546-008-9325-7.

    • Search Google Scholar
    • Export Citation
  • Kurbatskii, A. F., 2001: Computational modeling of the turbulent penetrative convection above the urban heat island in a stably stratified environment. J. Appl. Meteor., 40, 17481761, doi:10.1175/1520-0450(2001)040<1748:CMOTTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, doi:10.2151/jmsj.82.67.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227237, doi:10.1007/s00704-009-0247-1.

    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou Zeid, 2013: Synergistic interaction between urban heat island and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, doi:10.1175/JAMC-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou Zeid, M. L. Baek, S. Jessup, and J. A. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, doi:10.1175/JHM-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997a: A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteor., 36, 13771391, doi:10.1175/1520-0450(1997)036<1377:ALSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997b: A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: Velocity field. J. Appl. Meteor., 36, 13921402, doi:10.1175/1520-0450(1997)036<1392:ALSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 12471266, doi:10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, Q. Li, and S. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806825, doi:10.1175/2010JAMC2513.1.

    • Search Google Scholar
    • Export Citation
  • Milojevic, A., P. Wilkinson, B. Armstrong, M. Davis, A. Mavrogianni, S. Bohnenstengel, and S. Belcher, 2011: Impact of London’s urban heat island on heat-related mortality. Epidemiology, 22, 182183, doi:10.1097/01.ede.0000392239.91165.65.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy- driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Richiardone, R., and G. Brusasca, 1989: Numerical experiments on urban heat island intensity. Quart. J. Roy. Meteor. Soc., 115, 983995, doi:10.1002/qj.49711548811.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, doi:10.1002/qj.49712656409.

  • Ryu, Y.-H., J.-J. Baik, and J.-Y. Han, 2013: Daytime urban breeze circulation and its interaction with convective cells. Quart. J. Roy. Meteor. Soc., 139, 401413, doi:10.1002/qj.1973.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, doi:10.1175/2010JAMC2538.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Snyder, W. H., 1981: Guideline for fluid modeling of atmospheric diffusion. EPA Rep. EPA-600/8-81-009, 200 pp. [Available online at http://nepis.epa.gov/Adobe/PDF/2000BDW8.PDF.]

  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, W., 2009: The influence of thermally-induced mesoscale circulations on turbulence statistics over an idealized urban area under a zero background wind. Bound.-Layer Meteor., 131, 403423, doi:10.1007/s10546-009-9378-2.

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor., 31, 11461164, doi:10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 368 131 7
PDF Downloads 280 76 7