Two-Meter Temperature and Precipitation from Atmospheric Reanalysis Evaluated for Alaska

Rick Lader Department of Atmospheric Sciences, Geophysical Institute, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Rick Lader in
Current site
Google Scholar
PubMed
Close
,
Uma S. Bhatt Department of Atmospheric Sciences, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Uma S. Bhatt in
Current site
Google Scholar
PubMed
Close
,
John E. Walsh International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by John E. Walsh in
Current site
Google Scholar
PubMed
Close
,
T. Scott Rupp International Arctic Research Center, and Scenarios Network for Alaska and Arctic Planning, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by T. Scott Rupp in
Current site
Google Scholar
PubMed
Close
, and
Peter A. Bieniek International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Peter A. Bieniek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Alaska is experiencing effects of global climate change that are due, in large part, to the positive feedback mechanisms associated with polar amplification. The major risk factors include loss of sea ice and glaciers, thawing permafrost, increased wildfires, and ocean acidification. Reanalyses, integral to understanding mechanisms of Alaska’s past climate and to helping to calibrate modeling efforts, are based on the output of weather forecast models that assimilate observations. This study evaluates temperature and precipitation from five reanalyses at monthly and daily time scales for the period 1979–2009. Monthly data are evaluated spatially at grid points and for six climate zones in Alaska. In addition, daily maximum temperature, minimum temperature, and precipitation from reanalyses are compared with meteorological-station data at six locations. The reanalyses evaluated in this study include the NCEP–NCAR reanalysis (R1), North American Regional Reanalysis (NARR), Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Maps of seasonal bias and standard deviation, constructed from monthly data, show how the reanalyses agree with observations spatially. Cross correlations between the monthly gridded and daily station time series are computed to provide a measure of confidence that data users can assume when selecting reanalysis data in a region without many surface observations. A review of natural hazards in Alaska indicates that MERRA is the top reanalysis for wildfire and interior-flooding applications. CFSR is the recommended reanalysis for North Slope coastal erosion issues and, along with ERA-Interim, for heavy precipitation in southeastern Alaska.

Corresponding author address: Rick Lader, International Arctic Research Center, University of Alaska Fairbanks, P.O. Box 752325, Fairbanks, AK 99775. E-mail: rtladerjr@alaska.edu

Abstract

Alaska is experiencing effects of global climate change that are due, in large part, to the positive feedback mechanisms associated with polar amplification. The major risk factors include loss of sea ice and glaciers, thawing permafrost, increased wildfires, and ocean acidification. Reanalyses, integral to understanding mechanisms of Alaska’s past climate and to helping to calibrate modeling efforts, are based on the output of weather forecast models that assimilate observations. This study evaluates temperature and precipitation from five reanalyses at monthly and daily time scales for the period 1979–2009. Monthly data are evaluated spatially at grid points and for six climate zones in Alaska. In addition, daily maximum temperature, minimum temperature, and precipitation from reanalyses are compared with meteorological-station data at six locations. The reanalyses evaluated in this study include the NCEP–NCAR reanalysis (R1), North American Regional Reanalysis (NARR), Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Maps of seasonal bias and standard deviation, constructed from monthly data, show how the reanalyses agree with observations spatially. Cross correlations between the monthly gridded and daily station time series are computed to provide a measure of confidence that data users can assume when selecting reanalysis data in a region without many surface observations. A review of natural hazards in Alaska indicates that MERRA is the top reanalysis for wildfire and interior-flooding applications. CFSR is the recommended reanalysis for North Slope coastal erosion issues and, along with ERA-Interim, for heavy precipitation in southeastern Alaska.

Corresponding author address: Rick Lader, International Arctic Research Center, University of Alaska Fairbanks, P.O. Box 752325, Fairbanks, AK 99775. E-mail: rtladerjr@alaska.edu
Save
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906, doi:10.1175/2010JCLI3297.1.

    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., U. S. Bhatt, L. A. Rundquist, S. D. Lindsey, X. Zhang, and R. L. Thoman, 2011: Large-scale climate controls of interior Alaska river ice breakup. J. Climate, 24, 286297, doi:10.1175/2010JCLI3809.1.

    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., and Coauthors, 2012: Climate divisions for Alaska based on objective methods. J. Appl. Meteor. Climatol., 51, 12761289, doi:10.1175/JAMC-D-11-0168.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2008: NASA’s Modern Era Retrospective-Analysis for Research and Applications: Integrating Earth observations. IEEE Earthzine, 1 (1–4), 82367. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., A. N. Grant, G. P. Compo, T. Ewen, T. Griesser, A. M. Fischer, M. Schraner, and A. Stickler, 2012: A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Climate Dyn., 39, 15771598, doi:10.1007/s00382-012-1291-6.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, S. F. Trainor, P. Cochran, H. Huntington, C. Markon, M. McCammon, A. D. McGuire, and M. Serreze, 2014: Alaska. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 514–536. [Available online at http://nca2014.globalchange.gov/system/files_force/downloads/high/NCA3_Full_Report_22_Alaska_HighRes.pdf?download=1.]

  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, doi:10.1175/2010JCLI4090.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fan, X., J. E. Walsh, and J. R. Krieger, 2008: A one-year experimental Arctic reanalysis and comparisons with ERA-40 and NCEP/NCAR reanalyses. Geophys. Res. Lett., 35, L19811, doi:10.1029/2008GL035110.

    • Search Google Scholar
    • Export Citation
  • Francis, O. P., and D. E. Atkinson, 2012: Synoptic forcing of wave states in the southeast Chukchi Sea, Alaska, at nearshore locations. Nat. Hazards, 62, 12731300, doi:10.1007/s11069-012-0148-y.

    • Search Google Scholar
    • Export Citation
  • Hartmann, B., and G. Wendler, 2005: The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate, 18, 48244839, doi:10.1175/JCLI3532.1.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K. A., 2010: A standardized framework for evaluating the skill of regional climate downscaling techniques. Ph.D. dissertation, University of Illinois at Urbana–Champaign, 158 pp. [Available online at http://www.snap.uaf.edu/attachments/1_Hayhoe_Katharine.pdf.]

  • Hill, D. F., N. Bruhis, S. E. Calos, A. Arendt, and J. Beamer, 2015: Spatial and temporal variability of freshwater discharge into the Gulf of Alaska. J. Geophys. Res., 120, 634646, doi:10.1002/2014JC010395.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., N. Nicholls, and A. Ghazi, 1999: CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary. Climatic Change, 42, 37, doi:10.1023/A:1005491526870.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, and C. A. Hiemstra, 2014: Northern Hemisphere glacier and ice caps surface mass balance and contribution to sea level rise. J. Climate, 27, 60516073, doi:10.1175/JCLI-D-13-00669.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mills, C. M., and J. E. Walsh, 2013: Seasonal variation and spatial patterns of the atmospheric component of the Pacific decadal oscillation. J. Climate, 26, 15751594, doi:10.1175/JCLI-D-12-00264.1.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., A. M. Macdonald, G. W. K. Moore, I. A. Renfrew, J. E. Walsh, and W. S. Kessler, 2009: Seasonal evolution of Aleutian low pressure systems: Implications for the North Pacific subpolar circulation. J. Phys. Oceanogr., 39, 13171339, doi:10.1175/2008JPO3891.1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2013: Comments on “Current GCMs’ unrealistic negative feedback in the Arctic.” J. Climate, 26, 77837788, doi:10.1175/JCLI-D-12-00331.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. E. Overland, and N. A. Bond, 2005: The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J. Climate, 18, 160177, doi:10.1175/JCLI3253.1.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010: NARR’s atmospheric water cycle components. Part I: 20-year mean and annual interactions. J. Hydrometeor., 11, 12051219, doi:10.1175/2010JHM1193.1.

    • Search Google Scholar
    • Export Citation
  • Rupp, T. S., X. Chen, M. Olson, and D. A. McGuire, 2007: Sensitivity of simulated boreal fire dynamics to uncertainties in climate drivers. Earth Interact., 11, 121, doi:10.1175/EI189.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shulski, M., J. Walsh, E. Stevens, and R. Thoman, 2010: Diagnosis of extended cold-season temperature anomalies in Alaska. Mon. Wea. Rev., 138, 453462, doi:10.1175/2009MWR3039.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., G. P. Compo, and D. K. Hooper, 2014: Web-Based Reanalysis Intercomparison Tools (WRIT) for analysis and comparison of reanalyses and other datasets. Bull. Amer. Meteor. Soc., 95, 16711678, doi:10.1175/BAMS-D-13-00192.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 718 243 18
PDF Downloads 518 136 9