Extrapolating Satellite Winds to Turbine Operating Heights

Merete Badger Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark

Search for other papers by Merete Badger in
Current site
Google Scholar
PubMed
Close
,
Alfredo Peña Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark

Search for other papers by Alfredo Peña in
Current site
Google Scholar
PubMed
Close
,
Andrea N. Hahmann Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark

Search for other papers by Andrea N. Hahmann in
Current site
Google Scholar
PubMed
Close
,
Alexis A. Mouche IFREMER/LOS, Plouzané, France

Search for other papers by Alexis A. Mouche in
Current site
Google Scholar
PubMed
Close
, and
Charlotte B. Hasager Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark

Search for other papers by Charlotte B. Hasager in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellite-based wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long-term stability correction that is based on numerical weather prediction (NWP) model outputs. The effect of the long-term stability correction on the wind profile is significant. The method is applied to Envisat Advanced Synthetic Aperture Radar scenes acquired over the south Baltic Sea. This leads to maps of the long-term stability correction and wind speed at a height of 100 m with a spatial resolution of 0.02°. Calculations of the corresponding wind power density and Weibull parameters are shown. Comparisons with mast observations reveal that NWP model outputs can correct successfully for long-term stability effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important in nearshore areas where most offshore wind farms are built.

Corresponding author address: Merete Badger, Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark. E-mail: mebc@dtu.dk

Abstract

Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellite-based wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long-term stability correction that is based on numerical weather prediction (NWP) model outputs. The effect of the long-term stability correction on the wind profile is significant. The method is applied to Envisat Advanced Synthetic Aperture Radar scenes acquired over the south Baltic Sea. This leads to maps of the long-term stability correction and wind speed at a height of 100 m with a spatial resolution of 0.02°. Calculations of the corresponding wind power density and Weibull parameters are shown. Comparisons with mast observations reveal that NWP model outputs can correct successfully for long-term stability effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important in nearshore areas where most offshore wind farms are built.

Corresponding author address: Merete Badger, Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark. E-mail: mebc@dtu.dk
Save
  • Badger, M., J. Badger, M. Nielsen, C. B. Hasager, and A. Peña, 2010: Wind class sampling of satellite SAR imagery for offshore wind resource mapping. J. Appl. Meteor. Climatol., 49, 24742491, doi:10.1175/2010JAMC2523.1.

    • Search Google Scholar
    • Export Citation
  • Badger, M., and Coauthors, 2012: Bringing satellite winds to hub-height. Proc. EWEA 2012—European Wind Energy Conf. and Exhibition, Copenhagen, Denmark, EWEA, 9 pp. [Available online at http://orbit.dtu.dk/files/7946190/BRINGING_SATELLITE_WINDS_TO_HUB_HEIGHT.pdf.]

  • Barthelmie, R. J., and S. C. Pryor, 2003: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions. J. Appl. Meteor., 42, 8394, doi:10.1175/1520-0450(2003)042<0083:CSSOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canadian Space Agency, 2015: RADARSAT Constellation. Accessed 22 October 2015. [Available online at http://www.asc-csa.gc.ca/eng/satellites/radarsat/.]

  • Capps, S. B., and C. S. Zender, 2009: Global ocean wind power sensitivity to surface layer stability. Geophys. Res. Lett., 36, L09801, doi:10.1029/2008GL037063.

    • Search Google Scholar
    • Export Citation
  • Capps, S. B., and C. S. Zender, 2010: Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. J. Geophys. Res., 115, D09101, doi:10.1029/2009JD012679.

    • Search Google Scholar
    • Export Citation
  • Chang, R., R. Zhu, M. Badger, C. Hasager, X. Xing, and Y. Jiang, 2015: Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea. Remote Sens., 7, 467487, doi:10.3390/rs70100467.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, doi:10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Dagestad, K.-F., and Coauthors, 2012: Wind retrieval from synthetic aperture radar—An overview. Proc. SEASAR 2012 Advances in SAR Oceanography, Tromsø, Norway, ESA, 709. [Available online at http://orbit.dtu.dk/files/59267621/SeaSAR2012_whitepaper_wind.pdf.]

  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting Model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, doi:10.1002/we.1555.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: Documentation and support: Operational configurations of the ECMWF Integrated Forecasting System (IFS). ECMWF, accessed 22 October 2015. [Available online at http://www.ecmwf.int/en/forecasts/documentation-and-support.]

  • ESA, 2015a: What is Sentinel-1? ESA, accessed 22 October 2015. [Available online at https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-1.]

  • ESA, 2015b: What is Envisat? ESA, accessed 22 October 2015. [Available online at https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat.]

  • Fan, X., J. R. Krieger, J. Zhang, and X. Zhang, 2013: Assimilating QuikSCAT ocean surface winds with the Weather Research and Forecasting Model for surface wind-field simulation over the Chukchi/Beaufort Seas. Bound.-Layer Meteor., 148, 207226, doi:10.1007/s10546-013-9805-2.

    • Search Google Scholar
    • Export Citation
  • Fore, A. G., B. W. Stiles, A. H. Chau, B. A. Williams, R. S. Dunbar, and E. Rodríguez, 2014: Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans. Geosci. Remote Sens., 52, 5159, doi:10.1109/TGRS.2012.2235843.

    • Search Google Scholar
    • Export Citation
  • Gryning, S.-E., E. Batchvarova, B. Brümmer, H. Jørgensen, and S. Larsen, 2007: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound.-Layer Meteor., 124, 251268, doi:10.1007/s10546-007-9166-9.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., C. L. Vincent, A. Peña, J. Lange, and C. B. Hasager, 2015: Wind climate estimation using WRF model output: Method and model sensitivities over the sea. Int. J. Climatol., 35, 34223439, doi:10.1002/joc.4217.

    • Search Google Scholar
    • Export Citation
  • Hasager, C. B., A. Peña, M. B. Christiansen, P. Astrup, N. M. Nielsen, F. Monaldo, D. Thompson, and P. Nielsen, 2008: Remote sensing observation used in offshore wind energy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 1, 6779, doi:10.1109/JSTARS.2008.2002218.

    • Search Google Scholar
    • Export Citation
  • Hasager, C. B., M. Badger, A. Pena, X. G. Larsén, and F. Bingöl, 2011: SAR-based wind resource statistics in the Baltic Sea. Remote Sens., 3, 117144, doi:10.3390/rs3010117.

    • Search Google Scholar
    • Export Citation
  • Hasager, C. B., D. Stein, M. Courtney, A. Peña, T. Mikkelsen, M. Stickland, and A. Oldroyd, 2013: Hub height ocean winds over the North Sea observed by the NORSEWInD lidar array: Measuring techniques, quality control and data management. Remote Sens., 5, 42804303, doi:10.3390/rs5094280.

    • Search Google Scholar
    • Export Citation
  • Hasager, C. B., and Coauthors, 2015: Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens. Environ., 156, 247263, doi:10.1016/j.rse.2014.09.030.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2010: Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Oceanic Technol., 27, 721736, doi:10.1175/2009JTECHO698.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., A. Stoffelen, and S. de Haan, 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Högström, U., A.-S. Smedman, and H. Bergström, 2006: Calculation of wind speed variation with height over the sea. Wind Eng., 30, 269286, doi:10.1260/030952406779295480.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. L. W. V., 1906: Sur les fonctions convexes et les inégalités entre les valeurs moyennes (On convex functions and inequalities between average values). Acta Math., 30, 175193, doi:10.1007/BF02418571.

    • Search Google Scholar
    • Export Citation
  • Johannessen, J. A., V. Kudryavtsev, D. Akimov, T. Eldevik, N. Winther, and B. Chapron, 2005: On radar imaging of current features: 2. Mesoscale eddy and current front detection. J. Geophys. Res., 110, C07017, doi:10.1029/2004JC002802.

    • Search Google Scholar
    • Export Citation
  • Johannessen, J. A., B. Chapron, F. Collard, V. Kudryavtsev, A. Mouche, D. Akimov, and K.-F. Dagestad, 2008: Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations. Geophys. Res. Lett., 35, L22608, doi:10.1029/2008GL035709.

    • Search Google Scholar
    • Export Citation
  • Karagali, I., M. Badger, A. N. Hahmann, A. Peña, C. B. Hasager, and A. M. Sempreviva, 2013: Spatial and temporal variability of winds in the northern European seas. Renewable Energy, 57, 200210, doi:10.1016/j.renene.2013.01.017.

    • Search Google Scholar
    • Export Citation
  • Kelly, M., and S.-E. Gryning, 2010: Long-term mean wind profiles based on similarity theory. Bound.-Layer Meteor., 136, 377390, doi:10.1007/s10546-010-9509-9.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V., D. Akimov, J. Johannessen, and B. Chapron, 2005: On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res., 110, C07016, doi:10.1029/2004JC002505.

    • Search Google Scholar
    • Export Citation
  • Lange, B., S. Larsen, J. Højstrup, and R. Barthelmie, 2004: The influence of thermal effects on the wind speed profile of the coastal marine boundary layer. Bound.-Layer Meteor., 112, 587617, doi:10.1023/B:BOUN.0000030652.20894.83.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publ. 96-17, 16 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970010322.pdf.]

  • Monaldo, F. M., D. R. Thompson, R. C. Beal, W. G. Pichel, and P. Clemente-Colón, 2001: Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens., 39, 25872600, doi:10.1109/36.974994.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., D. R. Thompson, W. G. Pichel, and P. Clemente-Colon, 2004: A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans. Geosci. Remote Sens., 42, 283291, doi:10.1109/TGRS.2003.817213.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., X. Li, W. G. Pichel, and C. R. Jackson, 2014: Ocean wind speed climatology from spaceborne SAR imagery. Bull. Amer. Meteor. Soc., 95, 565569, doi:10.1175/BAMS-D-12-00165.1.

    • Search Google Scholar
    • Export Citation
  • Mouche, A. A., D. Hauser, J. F. Daloze, and C. Guerin, 2005: Dual-polarization measurements at C-band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens., 43, 753769, doi:10.1109/TGRS.2005.843951.

    • Search Google Scholar
    • Export Citation
  • NASA, 2015: Mission to Earth: ISS-RapidScat. JPL, accessed 22 October 2015. [Available online at http://www.jpl.nasa.gov/missions/iss-rapidscat.]

  • Navigant Research, 2014: Forecast 2014–2018. World market update 2013: International wind energy development. Accessed 30 April 2015.

  • Peña, A., and A. Hahmann, 2012: Atmospheric stability and turbulence fluxes at Horns Rev—An intercomparison of sonic, bulk and WRF model data. Wind Energy, 15, 717731, doi:10.1002/we.500.

    • Search Google Scholar
    • Export Citation
  • Peña, A., S.-E. Gryning, and C. B. Hasager, 2008: Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteor., 129, 479495, doi:10.1007/s10546-008-9323-9.

    • Search Google Scholar
    • Export Citation
  • Peña, A., A. N. Hahmann, C. B. Hasager, F. Bingöl, I. Karagali, J. Badger, M. Badger, and N.-E. Clausen, 2011: South Baltic wind atlas: South Baltic Offshore Wind Energy Regions Project. Risø.R-1775(EN), Risø DTU, National Laboratory for Sustainable Energy, 66 pp. [Available online at http://orbit.dtu.dk/fedora/objects/orbit:86024/datastreams/file_5578113/content.]

  • Peña, A., T. Mikkelsen, S.-E. Gryning, C. B. Hasager, A. N. Hahmann, M. Badger, I. Karagali, and M. Courtney, 2012: Offshore vertical wind shear. DTU Wind Energy-E-Rep. 0005, Department of Wind Energy, Technical University of Denmark, 117 pp. [Available online at http://www.orbit.dtu.dk/files/10591005/DTU_Wind_Energy_E_report_0005.pdf.]

  • Portabella, M., and A. Stoffelen, 2009: On scatterometer ocean stress. J. Atmos. Oceanic Technol., 26, 368382, doi:10.1175/2008JTECHO578.1.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., M. Nielsen, R. J. Barthelmie, and J. Mann, 2004: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: Quantifying uncertainties associated with sampling strategy and distribution fitting methods. J. Appl. Meteor., 43, 739750, doi:10.1175/2096.1.

    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., B. Chapron, T. Elfouhaily, K. Katsaros, and J. Tournadre, 1998: Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res., 103, 77677786, doi:10.1029/97JC01911.

    • Search Google Scholar
    • Export Citation
  • Sivareddy, S., M. Ravichandran, M. S. Girishkumar, and K. V. S. R. Prasad, 2015: Assessing the impact of various wind forcing on INCOIS-GODAS simulated ocean currents in the equatorial Indian Ocean. Ocean Dyn., 65, 12351247, doi:10.1007/s10236-015-0870-6.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stoffelen, A., and D. L. T. Anderson, 1993: Wind retrieval and ERS-1 scatterometer radar backscatter measurements. Adv. Space Res., 13, 5360, doi:10.1016/0273-1177(93)90527-I.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and D. L. T. Anderson, 1997a: Ambiguity removal and assimilation of scatterometer data. Quart. J. Roy. Meteor. Soc., 123, 491518, doi:10.1002/qj.49712353812.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and D. Anderson, 1997b: Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102, 57675780, doi:10.1029/96JC02860.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Troen, I., and E. L. Petersen, 1989: European wind atlas. Risø National Laboratory, 656 pp. [Available online at http://orbit.dtu.dk/files/112135732/European_Wind_Atlas.pdf.]

  • Vincent, C. L., and A. N. Hahmann, 2015: The impact of grid and spectral nudging on the variance of the near-surface wind speed. J. Appl. Meteor. Climatol., 54, 10211038, doi:10.1175/JAMC-D-14-0047.1.

    • Search Google Scholar
    • Export Citation
  • Westerhellweg, A., T. Neumann, and V. Riedel, 2012: FINO1 mast correction. DEWI Mag., 40, 6066. [Available online at http://www.dewi.de/dewi_res/fileadmin/pdf/publications/Magazin_40/09.pdf.]

    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Li, W. G. Pichel, and Z. Li, 2011: Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 47434750, doi:10.1109/TGRS.2011.2159802.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., W. Zhang, Z. Wu, X. Yang, X. Cao, and M. Zhu, 2015: Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system—A case study of Typhoon Bolaven. Front. Earth Sci., 9, 192201, doi:10.1007/s11707-014-0461-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 840 375 29
PDF Downloads 536 188 24