A Statistical Method for Categorical Drought Prediction Based on NLDAS-2

Zengchao Hao * Green Development Institute, School of Environment, Beijing Normal University, Beijing, China

Search for other papers by Zengchao Hao in
Current site
Google Scholar
PubMed
Close
,
Fanghua Hao * Green Development Institute, School of Environment, Beijing Normal University, Beijing, China

Search for other papers by Fanghua Hao in
Current site
Google Scholar
PubMed
Close
,
Youlong Xia Environmental Modeling Center, National Centers for Environmental Prediction, College Park, Maryland
I. M. Systems Group, College Park, Maryland

Search for other papers by Youlong Xia in
Current site
Google Scholar
PubMed
Close
,
Vijay P. Singh Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas
Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Search for other papers by Vijay P. Singh in
Current site
Google Scholar
PubMed
Close
,
Yang Hong Hydrometeorology and Remote Sensing Laboratory, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
,
Xinyi Shen Civil and Environmental Engineering Department, School of Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Xinyi Shen in
Current site
Google Scholar
PubMed
Close
, and
Wei Ouyang * Green Development Institute, School of Environment, Beijing Normal University, Beijing, China

Search for other papers by Wei Ouyang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drought is a slowly varying natural phenomenon and may have wide impacts on a range of sectors. Tremendous efforts have therefore been devoted to drought monitoring and prediction to reduce potential impacts of drought. Reliable drought prediction is critically important to provide information ahead of time for early warning to facilitate drought-preparedness plans. The U.S. Drought Monitor (USDM) is a composite drought product that depicts drought conditions in categorical forms, and it has been widely used to track drought and its impacts for operational and research purposes. The USDM is an assessment of drought condition but does not provide drought prediction information. Given the wide application of USDM, drought prediction in a categorical form similar to that of USDM would be of considerable importance, but it has not been explored thus far. This study proposes a statistical method for categorical drought prediction by integrating the USDM drought category as an initial condition with drought information from other sources such as drought indices from land surface simulation or statistical prediction. Incorporating USDM drought categories and drought indices from phase 2 of the North American Land Data Assimilation System (NLDAS-2), the proposed method is tested in Texas for 2001–14. Results show satisfactory performance of the proposed method for categorical drought prediction, which provides useful information to aid early warning for drought-preparedness plans.

Corresponding author address: Zengchao Hao, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China. E-mail: haozc@bnu.edu.cn

Abstract

Drought is a slowly varying natural phenomenon and may have wide impacts on a range of sectors. Tremendous efforts have therefore been devoted to drought monitoring and prediction to reduce potential impacts of drought. Reliable drought prediction is critically important to provide information ahead of time for early warning to facilitate drought-preparedness plans. The U.S. Drought Monitor (USDM) is a composite drought product that depicts drought conditions in categorical forms, and it has been widely used to track drought and its impacts for operational and research purposes. The USDM is an assessment of drought condition but does not provide drought prediction information. Given the wide application of USDM, drought prediction in a categorical form similar to that of USDM would be of considerable importance, but it has not been explored thus far. This study proposes a statistical method for categorical drought prediction by integrating the USDM drought category as an initial condition with drought information from other sources such as drought indices from land surface simulation or statistical prediction. Incorporating USDM drought categories and drought indices from phase 2 of the North American Land Data Assimilation System (NLDAS-2), the proposed method is tested in Texas for 2001–14. Results show satisfactory performance of the proposed method for categorical drought prediction, which provides useful information to aid early warning for drought-preparedness plans.

Corresponding author address: Zengchao Hao, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China. E-mail: haozc@bnu.edu.cn
Save
  • Agresti, A., 2010: Analysis of Ordinal Categorical Data. John Wiley and Sons, 424 pp.

  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/TAC.1974.1100705.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 10351056, doi:10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Beersma, J. J., and T. A. Buishand, 2004: Joint probability of precipitation and discharge deficits in the Netherlands. Water Resour. Res., 40, W12508, doi:10.1029/2004WR003265.

    • Search Google Scholar
    • Export Citation
  • Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, doi:10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., L. Magnusson, F. Wetterhall, H. L. Cloke, G. Balsamo, S. Boussetta, and F. Pappenberger, 2013: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol., 33, 17201729, doi:10.1002/joc.3545.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and Coauthors, 2011: North American Land Data Assimilation System Phase 2 (NLDAS-2): Development and applications. GEWEX News, Vol. 21, No. 2, International GEWEX Project Office, Silver Spring, MD, 6–7.

  • FEWS NET, 2011: East Africa: Past year one of the driest on record in the eastern Horn. U.S. Agency for International Development Famine Early Warning System Network Special Rep., 1 p. [Available online at http://www.fews.net/sites/default/files/documents/reports/FEWS%20NET%20EA_Historical%20drought%20context_061411.pdf.]

  • Fokianos, K., and B. Kedem, 2003: Regression theory for categorical time series. Stat. Sci., 18, 357376, doi:10.1214/ss/1076102425.

  • Guanche, Y., R. Mínguez, and F. J. Méndez, 2014: Autoregressive logistic regression applied to atmospheric circulation patterns. Climate Dyn., 42, 537552, doi:10.1007/s00382-013-1690-3.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 1999: Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Resour. Plann. Manage., 125, 333341, doi:10.1061/(ASCE)0733-9496(1999)125:6(333).

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and A. AghaKouchak, 2013: Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour., 57, 1218, doi:10.1016/j.advwatres.2013.03.009.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and V. P. Singh, 2013: Entropy-based method for bivariate drought analysis. J. Hydrol. Eng., 18, 780786, doi:10.1061/(ASCE)HE.1943-5584.0000621.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and V. P. Singh, 2015: Drought characterization from a multivariate perspective: A review. J. Hydrol., 527, 668678, doi:10.1016/j.jhydrol.2015.05.031.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., A. AghaKouchak, N. Nakhjiri, and A. Farahmand, 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, doi:10.1038/sdata.2014.1.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., Y. Hong, Y. Xia, V. P. Singh, F. Hao, and H. Cheng, 2016a: Modeling drought categories for probabilistic drought characterization using ordinal regression. J. Hydrol., 535, 331339, doi:10.1016/j.jhydrol.2016.01.074.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and Coauthors, 2016b: Satellite remote sensing drought monitoring and predictions over the globe. Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience, Y. Hong, Y. Zhang, and S. I. Khan, Eds., CRC Press, 392 pp., in press.

  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Kao, S. C., and R. S. Govindaraju, 2010: A copula-based joint deficit index for droughts. J. Hydrol., 380, 121134, doi:10.1016/j.jhydrol.2009.10.029.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, doi:10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2004: An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res., 40, W09304, doi:10.1029/2003WR002610.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and E. F. Wood, 2007: Monitoring and predicting the 2007 U.S. drought. Geophys. Res. Lett., 34, L22702, doi:10.1029/2007GL031673.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., M. A. Bell, M. K. Tippett, A. Kumar, M. P. Hoerling, X.-W. Quan, and H. Wang, 2012: Baseline probabilities for the seasonal prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12221237, doi:10.1175/JAMC-D-11-0132.1.

    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. L. Huntington, J. T. Abatzoglou, and L. M. Edwards, 2012: An evaluation of multiscalar drought indices in Nevada and eastern California. Earth Interact., 16, 118, doi:10.1175/2012EI000447.1.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mishra, A. K., and V. R. Desai, 2005: Drought forecasting using stochastic models. Stochastic Environ. Res. Risk Assess., 19, 326339, doi:10.1007/s00477-005-0238-4.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, doi:10.1016/j.jhydrol.2010.07.012.

  • Mishra, A. K., and V. P. Singh, 2011: Drought modeling—A review. J. Hydrol., 403, 157175, doi:10.1016/j.jhydrol.2011.03.049.

  • Mo, K. C., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, doi:10.1175/2008JHM1002.1.

  • Mo, K. C., and D. P. Lettenmaier, 2014: Hydrologic prediction over the conterminous United States using the National Multi-Model Ensemble. J. Hydrometeor., 15, 14571472, doi:10.1175/JHM-D-13-0197.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and B. Lyon, 2015: Global meteorological drought prediction using the North American Multi-Model Ensemble. J. Hydrometeor., 16, 14091424, doi:10.1175/JHM-D-14-0192.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Shafer, M. Svoboda, B. Wardlow, M. C. Anderson, C. Hain, and J. Basara, 2015: Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bull. Amer. Meteor. Soc., 96, 10731078, doi:10.1175/BAMS-D-14-00219.1.

    • Search Google Scholar
    • Export Citation
  • Özger, M., A. K. Mishra, and V. P. Singh, 2012: Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydrometeor., 13, 284297, doi:10.1175/JHM-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, W., 1965: Meteorological drought. Weather Bureau Research Paper 45, 65 pp. [Available online at https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.]

  • Quan, X.-W., M. P. Hoerling, B. Lyon, A. Kumar, M. A. Bell, M. K. Tippett, and H. Wang, 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Rajsekhar, D., V. P. Singh, and A. K. Mishra, 2015: Multivariate drought index: An information theory based approach for integrated drought assessment. J. Hydrol., 526, 164182, doi:10.1016/j.jhydrol.2014.11.031.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, and M. Clark, 2006: A new method to produce categorical streamflow forecasts. Water Resour. Res., 42, W09501, doi:10.1029/2006WR004984.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Shafiee-Jood, M., X. Cai, L. Chen, X.-Z. Liang, and P. Kumar, 2014: Assessing the value of seasonal climate forecast information through an end-to-end forecasting framework: Application to U.S. 2012 drought in central Illinois. Water Resour. Res., 50, 65926609, doi:10.1002/2014WR015822.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, F. Wen, and E. F. Wood, 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, doi:10.1029/2004JD005182.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Y. Xia, L. Luo, E. F. Wood, M. Ek, K. E. Mitchell, and N. Team, 2012: Drought monitoring with the North American Land Data Assimilation System (NLDAS): A framework for merging model and satellite data for improved drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches, B. Wardlow, M. Anderson, and J. Verdin, Eds., CRC Press, 227–259.

  • Shrestha, R. R., M. A. Schnorbus, and A. J. Cannon, 2015: A dynamical climate model–driven hydrologic prediction system for the Fraser River, Canada. J. Hydrometeor., 16, 12731292, doi:10.1175/JHM-D-14-0167.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., and A. W. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., C. Funk, and A. Hoell, 2014: Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa. Environ. Res. Lett., 9, 094009, doi:10.1088/1748-9326/9/9/094009.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trambauer, P., M. Werner, H. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook, 2015: Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci., 19, 16951711, doi:10.5194/hess-19-1695-2015.

    • Search Google Scholar
    • Export Citation
  • Wang, E., Y. Zhang, J. Luo, F. H. S. Chiew, and Q. J. Wang, 2011: Monthly and seasonal streamflow forecasts using rainfall-runoff modeling and historical weather data. Water Resour. Res., 47, W05516, doi:10.1029/2010WR009922.

    • Search Google Scholar
    • Export Citation
  • Werner, K., D. Brandon, M. Clark, and S. Gangopadhyay, 2004: Climate index weighting schemes for NWS ESP-based seasonal volume forecasts. J. Hydrometeor., 5, 10761090, doi:10.1175/JHM-381.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd. ed. Elsevier, 676 pp.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, C. D. Peters-Lidard, D. Mocko, M. Svoboda, J. Sheffield, and E. F. Wood, 2014: Application of USDM Statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States. J. Geophys. Res. Atmos., 119, 29472965, doi:10.1002/2013JD020994.

    • Search Google Scholar
    • Export Citation
  • Yao, H., and A. Georgakakos, 2001: Assessment of Folsom Lake response to historical and potential future climate scenarios: 2. Reservoir management. J. Hydrol., 249, 176196, doi:10.1016/S0022-1694(01)00418-8.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., K. Mo, and E. F. Wood, 2012: Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J. Hydrometeor., 13, 463482, doi:10.1175/JHM-D-11-038.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, J. K. Roundy, and M. Pan, 2013: CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, and Z. Ma, 2015: A review on climate-model-based seasonal hydrologic forecasting: Physical understanding and system development. Wiley Interdiscip. Rev.: Water, 2, 523536, doi:10.1002/wat2.1088.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 758 283 12
PDF Downloads 546 113 12