Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination

Kiel L. Ortega Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kiel L. Ortega in
Current site
Google Scholar
PubMed
Close
,
John M. Krause Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by John M. Krause in
Current site
Google Scholar
PubMed
Close
, and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study is the third part of a paper series investigating the polarimetric radar properties of melting hail and application of those properties for operational polarimetric hail detection and determination of its size. The results of theoretical simulations in Part I were used to develop a hail size discrimination algorithm (HSDA) described in Part II. The HSDA uses radar reflectivity Z, differential reflectivity ZDR, and cross-correlation coefficient ρhv along with melting-level height within a fuzzy-logic scheme to distinguish among three hail size classes: small hail (with diameter D < 2.5 cm), large hail (2.5 < D < 5.0 cm), and giant hail (D > 5.0 cm). The HSDA validation is performed using radar data collected by numerous WSR-88D sites and more than 3000 surface hail reports obtained from the Severe Hazards Analysis and Verification Experiment (SHAVE). The original HSDA version was modified in the process of validation, and the modified algorithm demonstrates probability of detection of 0.594, false-alarm ratio of 0.136, and resulting critical success index (CSI) equal to 0.543. The HSDA outperformed the current operational single-polarization hail detection algorithm, which only provides a single hail size estimate per storm and is characterized by CSI equal to 0.324. It is shown that HSDA is particularly sensitive to the quality of ZDR measurements, which might be affected by possible radar miscalibration and anomalously high differential attenuation.

Corresponding author address: Kiel L. Ortega, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kiel.ortega@noaa.gov

Abstract

This study is the third part of a paper series investigating the polarimetric radar properties of melting hail and application of those properties for operational polarimetric hail detection and determination of its size. The results of theoretical simulations in Part I were used to develop a hail size discrimination algorithm (HSDA) described in Part II. The HSDA uses radar reflectivity Z, differential reflectivity ZDR, and cross-correlation coefficient ρhv along with melting-level height within a fuzzy-logic scheme to distinguish among three hail size classes: small hail (with diameter D < 2.5 cm), large hail (2.5 < D < 5.0 cm), and giant hail (D > 5.0 cm). The HSDA validation is performed using radar data collected by numerous WSR-88D sites and more than 3000 surface hail reports obtained from the Severe Hazards Analysis and Verification Experiment (SHAVE). The original HSDA version was modified in the process of validation, and the modified algorithm demonstrates probability of detection of 0.594, false-alarm ratio of 0.136, and resulting critical success index (CSI) equal to 0.543. The HSDA outperformed the current operational single-polarization hail detection algorithm, which only provides a single hail size estimate per storm and is characterized by CSI equal to 0.324. It is shown that HSDA is particularly sensitive to the quality of ZDR measurements, which might be affected by possible radar miscalibration and anomalously high differential attenuation.

Corresponding author address: Kiel L. Ortega, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kiel.ortega@noaa.gov
Save
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, doi:10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ansari, S., S. Del Greco, B. Nelson, and H. Frederick, 2006: The severe weather data inventory (SWDI): Spatial query tools, web services and data portals at NOAA’s National Climatic Data Center (NCDC). 22nd Int. Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 11.4. [Available online at https://ams.confex.com/ams/pdfpapers/100482.pdf.]

  • Balakrishnan, N., and D. S. Zrnić, 1990: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, doi:10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteor., 13 (3), 3245.

    • Search Google Scholar
    • Export Citation
  • Boustead, J. M., 2008: Using maximum storm-top divergence and the vertical freezing level to forecast hail size. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P6.6. [Available online at https://ams.confex.com/ams/pdfpapers/142145.pdf.]

  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160, doi:10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., G. S. Garfield, D. M. Kingfield, C. D. Karstens, W. Line, K. L. Ortega, T. M. Smith, and G. J. Stumpf, 2014: The 2013/2014 experimental warning program at the NOAA hazardous weather testbed. 27th Conf. Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 4B.1. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper255935.html.]

  • Cunningham, J. G., W. D. Zittel, R. R. Lee, and R. L. Ice, 2013: Methods for identifying systematic differential reflectivity (ZDR) biases on the operational WSR-88D network. 34th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228792/JCunningham_36thRadarConf_9B5.pdf.]

  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, doi:10.1175/JAM2529.1.

    • Search Google Scholar
    • Export Citation
  • Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the upper Midwest and central plains of the United States. Wea. Forecasting, 22, 244254, doi:10.1175/WAF1008.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, doi:10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552, doi:10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, doi:10.1175/WAF956.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, doi:10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Istok, M. J., and Coauthors, 2009: WSR-88D dual polarization initial operating capabilities. 25th Conf. IIPS, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/pdfpapers/148927.pdf.]

  • Kaltenboeck, R., and A. Ryzhkov, 2013: Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336, doi:10.1016/j.atmosres.2012.05.013.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovosky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using spectral (bin) microphysics model in a 2D frame. Atmos. Res., 99, 129146, doi:10.1016/j.atmosres.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., A. Khain, N. Benmoshe, E. Ilotoviz, A. Ryzhkov, and V. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived parameters. Wea. Forecasting, 21, 802823, doi:10.1175/WAF942.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1998: The radar “three-body scatter spike”: An operational large-hail signature. Wea. Forecasting, 13, 327340, doi:10.1175/1520-0434(1998)013<0327:TRTBSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NWS, 2007: Storm Data preparation. National Weather Service Instruction 10-1605, 97 pp. [Available online at https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf.]

  • NWS, 2014: WFO severe weather products specification. National Weather Service Instruction 10-511, 35 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01005011curr.pdf.]

  • Ortega, K. L., T. M. Smith, K. L. Manross, A. G. Kolodziej, K. A. Scharfenberg, A. Witt, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, doi:10.1175/2009BAMS2815.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrinić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987a: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987b: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 27642782, doi:10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrinić, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, doi:10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20, 775788, doi:10.1175/WAF881.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, doi:10.1175/MWR-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, H. B. Bluestein, and S. F. Blair, 2014: Polarimetric analysis of two giant-hail-producing supercells observed by X-band and S-band radars. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 166. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Handout/Paper255455/giant_hail_storms_poster.pdf.]

  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 15211525, doi:10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar for estimating maximum hailstone size. J. Appl. Meteor., 30, 425431, doi:10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1140 494 29
PDF Downloads 1183 430 30