Using Synthetic Tropical Cyclones to Characterize Extreme Hurricanes Affecting Charleston, South Carolina

Kelsey N. Ellis University of Tennessee, Knoxville, Tennessee

Search for other papers by Kelsey N. Ellis in
Current site
Google Scholar
PubMed
Close
,
Jill C. Trepanier Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Jill C. Trepanier in
Current site
Google Scholar
PubMed
Close
, and
Robert E. Hodges Guy Carpenter & Co., LLC, Miami, Florida

Search for other papers by Robert E. Hodges in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics and conditions favoring extreme hurricanes remain largely unknown because of their small number in the observational record. Synthetic tracks are capable of providing a large, representative sample of these events, which provides an opportunity to further understanding of extreme characteristics as compared with those of more common tropical cyclones. The authors compare 300 synthetic extreme (100-yr event, ≥48.9 m s−1) and 300 common (5-yr event, ≤33.6 m s−1) tropical cyclones for Charleston, South Carolina, for differences in spatial, temporal, and other characteristics. Results suggest that extreme hurricanes have a more-defined spatial and temporal behavior, generally forming off the coast of Africa and making a direct landfall at Charleston. Common tropical cyclones sometimes make prior landfalls, may approach from either the Gulf of Mexico or the Atlantic Ocean, and often decay well before reaching Charleston. They are likely to occur through much of the hurricane season, whereas extreme events are most common during a short period toward the end of August. There is no significant difference between common and extreme translational velocity at landfall. This study demonstrates the opportunity that synthetic tracks provide for understanding the rarest hurricanes and provides initial insight into those affecting Charleston.

Corresponding author address: Kelsey N. Ellis, Dept. of Geography, University of Tennessee, Burchfiel Geography Bldg., Knoxville, TN 37996. E-mail: ellis@utk.edu

Abstract

The characteristics and conditions favoring extreme hurricanes remain largely unknown because of their small number in the observational record. Synthetic tracks are capable of providing a large, representative sample of these events, which provides an opportunity to further understanding of extreme characteristics as compared with those of more common tropical cyclones. The authors compare 300 synthetic extreme (100-yr event, ≥48.9 m s−1) and 300 common (5-yr event, ≤33.6 m s−1) tropical cyclones for Charleston, South Carolina, for differences in spatial, temporal, and other characteristics. Results suggest that extreme hurricanes have a more-defined spatial and temporal behavior, generally forming off the coast of Africa and making a direct landfall at Charleston. Common tropical cyclones sometimes make prior landfalls, may approach from either the Gulf of Mexico or the Atlantic Ocean, and often decay well before reaching Charleston. They are likely to occur through much of the hurricane season, whereas extreme events are most common during a short period toward the end of August. There is no significant difference between common and extreme translational velocity at landfall. This study demonstrates the opportunity that synthetic tracks provide for understanding the rarest hurricanes and provides initial insight into those affecting Charleston.

Corresponding author address: Kelsey N. Ellis, Dept. of Geography, University of Tennessee, Burchfiel Geography Bldg., Knoxville, TN 37996. E-mail: ellis@utk.edu
Save
  • Birkland, T. A., 1997: After Disaster: Agenda Setting, Public Policy, and Focusing Events. Georgetown University Press, 178 pp.

  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, doi:10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Eilers, P. H. C., and B. D. Marx, 1996: Flexible smoothing with B-splines and penalties. Stat. Sci., 11, 89102. [Available online at http://www.jstor.org/stable/2246049.]

    • Search Google Scholar
    • Export Citation
  • Ellis, K. N., L. M. Sylvester, and J. C. Trepanier, 2015: Spatiotemporal patterns of extreme hurricanes impacting US coastal cities. Nat. Hazards, 75, 27332749, doi:10.1007/s11069-014-1461-4.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353356, doi:10.1175/BAMS-84-3-353.

  • Elsner, J. B., and A. B. Kara, 1999: Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, 488 pp.

  • Elsner, J. B., and T. H. Jagger, 2013: Hurricane Climatology: A Modern Statistical Guide Using R. Oxford University Press, 430 pp.

  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, doi:10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., R. Hodges, and T. Jagger, 2012: Spatial grids for hurricane climate research. Climate Dyn., 39, 2136, doi:10.1007/s00382-011-1066-5.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665559, doi:10.1038/44326.

  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2007: Statistical modelling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, doi:10.1111/j.1600-0870.2007.00240.x.

    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., 2007: The use of synthetic hurricane tracks in risk analysis and climate change damage assessment. J. Appl. Meteor. Climatol., 46, 19561966, doi:10.1175/2007JAMC1532.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, R. E., and J. B. Elsner, 2012: The spatial pattern of the sun–hurricane connection across the North Atlantic. ISRN Meteor., 517962, doi:10.5402/2012/517962.

    • Search Google Scholar
    • Export Citation
  • Jagger, T., and J. Elsner, 2006: Climatology models for extreme hurricane winds in the United States. J. Climate, 19, 32203236, doi:10.1175/JCLI3913.1.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations and uses. NOAA Tech. Memo. NWS NHC 22, 24 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.]

  • Keim, B., R. Muller, and G. Stone, 2007: Spatiotemporal patterns and return periods of tropical storm and hurricane strikes from Texas to Maine. J. Climate, 20, 34983509, doi:10.1175/JCLI4187.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, D., 2012: Oce: Analysis of oceanographic data, version 0.8-9 R package. [Available online at https://cran.r-project.org/web/packages/oce/index.html.]

  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, doi:10.1175/BAMS-88-11-1767.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Kriesche, B., H. Weindl, A. Smolka, and V. Schmidt, 2014: Stochastic simulation model for tropical cyclone tracks, with special emphasis on landfall behavior. Nat. Hazards, 73, 335353, doi:10.1007/s11069-014-1075-x.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, doi:10.1175/2009MWR2713.1.

    • Search Google Scholar
    • Export Citation
  • Lin, N., K. A. Emanuel, J. Smith, and E. Vanmarcke, 2010: Risk assessment of hurricane storm surge for New York City. J. Geophys. Res., 115, D18121, doi:10.1029/2009JD013630.

    • Search Google Scholar
    • Export Citation
  • Malmstadt, J., J. Elsner, and T. Jagger, 2010: Risk of strong hurricane winds to Florida cities. J. Appl. Meteor. Climatol., 49, 21212132, doi:10.1175/2010JAMC2420.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765.

    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, and M. Zhao, 2014: Variability of tropical cyclone track density in the North Atlantic: Observations and high-resolution simulations. J. Climate, 27, 47974814, doi:10.1175/JCLI-D-13-00587.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv., 1, e1500014, doi:10.1126/sciadv.1500014.

    • Search Google Scholar
    • Export Citation
  • Pielke, R., Jr., J. Gratz, C. Landsea, D. Collins, M. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Rigby, R. A., and D. M. Stasinopoulos, 2005: Generalized additive models for location, scale and shape. J. Roy. Stat. Soc., 54C, 507554, doi:10.1111/j.1467-9876.2005.00510.x.

    • Search Google Scholar
    • Export Citation
  • Rumpf, J., H. Weindl, P. Höppe, E. Rauch, and V. Schmidt, 2009: Tropical cyclone hazard assessment using model-based track simulation. Nat. Hazards, 48, 383398, doi:10.1007/s11069-008-9268-9.

    • Search Google Scholar
    • Export Citation
  • Scheitlin, K., J. Elsner, S. Lewers, J. Malmstadt, and T. Jagger, 2011: Risk assessment of hurricane winds for Eglin Air Force Base in northwestern Florida, USA. Theor. Appl. Climatol., 105, 287296, doi:10.1007/s00704-010-0386-4.

    • Search Google Scholar
    • Export Citation
  • Strazzo, S., J. B. Elsner, T. LaRow, D. J. Halperin, and M. Zhao, 2013: Observed versus GCM-generated local tropical cyclone frequency: Comparisons using a spatial lattice. J. Climate, 26, 82578268, doi:10.1175/JCLI-D-12-00808.1.

    • Search Google Scholar
    • Export Citation
  • Trepanier, J. C., and K. N. Scheitlin, 2014: Hurricane wind risk in Louisiana. Nat. Hazards, 70, 11811195, doi:10.1007/s11069-013-0869-6.

    • Search Google Scholar
    • Export Citation
  • Trepanier, J. C., K. N. Ellis, and C. S. Tucker, 2015: Hurricane risk variability along the Gulf of Mexico coastline. PLoS One, 10, e0118196, doi:10.1371/journal.pone.0118196.

    • Search Google Scholar
    • Export Citation
  • Vickery, P., P. Skerlj, and L. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126, 12221237, doi:10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, L. J. Pietrafesa, J. M. Morrison, and T. Karl, 2005: Climatology and interannual variability of North Atlantic hurricane tracks. J. Climate, 18, 53705381, doi:10.1175/JCLI3560.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 88 17
PDF Downloads 213 57 13