The Relationship between Elevation Roughness and Tornado Activity: A Spatial Statistical Model Fit to Data from the Central Great Plains

James B. Elsner Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by James B. Elsner in
Current site
Google Scholar
PubMed
Close
,
Tyler Fricker Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Tyler Fricker in
Current site
Google Scholar
PubMed
Close
,
Holly M. Widen Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Holly M. Widen in
Current site
Google Scholar
PubMed
Close
,
Carla M. Castillo Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Carla M. Castillo in
Current site
Google Scholar
PubMed
Close
,
John Humphreys Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by John Humphreys in
Current site
Google Scholar
PubMed
Close
,
Jihoon Jung Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Jihoon Jung in
Current site
Google Scholar
PubMed
Close
,
Shoumik Rahman Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Shoumik Rahman in
Current site
Google Scholar
PubMed
Close
,
Amanda Richard Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Amanda Richard in
Current site
Google Scholar
PubMed
Close
,
Thomas H. Jagger Department of Geography, Florida State University, Tallahassee, Florida

Search for other papers by Thomas H. Jagger in
Current site
Google Scholar
PubMed
Close
,
Tachanat Bhatrasataponkul Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Tachanat Bhatrasataponkul in
Current site
Google Scholar
PubMed
Close
,
Christian Gredzens Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Christian Gredzens in
Current site
Google Scholar
PubMed
Close
, and
P. Grady Dixon Department of Geosciences, Fort Hays State University, Fort Hays, Kansas

Search for other papers by P. Grady Dixon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The statistical relationship between elevation roughness and tornado activity is quantified using a spatial model that controls for the effect of population on the availability of reports. Across a large portion of the central Great Plains the model shows that areas with uniform elevation tend to have more tornadoes on average than areas with variable elevation. The effect amounts to a 2.3% [(1.6%, 3.0%) = 95% credible interval] increase in the rate of a tornado occurrence per meter of decrease in elevation roughness, defined as the highest minus the lowest elevation locally. The effect remains unchanged if the model is fit to the data starting with the year 1995. The effect strengthens for the set of intense tornadoes and is stronger using an alternative definition of roughness. The elevation-roughness effect appears to be strongest over Kansas, but it is statistically significant over a broad domain that extends from Texas to South Dakota. The research is important for developing a local climatological description of tornado occurrence rates across the tornado-prone region of the Great Plains.

Corresponding author address: James B. Elsner, Dept. of Geography, Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306. E-mail: jelsner@fsu.edu

Abstract

The statistical relationship between elevation roughness and tornado activity is quantified using a spatial model that controls for the effect of population on the availability of reports. Across a large portion of the central Great Plains the model shows that areas with uniform elevation tend to have more tornadoes on average than areas with variable elevation. The effect amounts to a 2.3% [(1.6%, 3.0%) = 95% credible interval] increase in the rate of a tornado occurrence per meter of decrease in elevation roughness, defined as the highest minus the lowest elevation locally. The effect remains unchanged if the model is fit to the data starting with the year 1995. The effect strengthens for the set of intense tornadoes and is stronger using an alternative definition of roughness. The elevation-roughness effect appears to be strongest over Kansas, but it is statistically significant over a broad domain that extends from Texas to South Dakota. The research is important for developing a local climatological description of tornado occurrence rates across the tornado-prone region of the Great Plains.

Corresponding author address: James B. Elsner, Dept. of Geography, Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306. E-mail: jelsner@fsu.edu
Save
  • Besag, J., 1975: Statistical analysis of non-lattice data. J. Roy. Stat. Soc., 24D, 179195.

  • Bluestein, H., 2000: A tornadic supercell over elevated, complex terrain: The Divide, Colorado, storm of 12 July 1996. Mon. Wea. Rev., 128, 795809, doi:10.1175/1520-0493(2000)128<0795:ATSOEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brooks, H. E., C. A. Doswell, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, doi:10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551776, doi:10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in tornado simulator. J. Atmos. Sci., 30, 14271430, doi:10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dessens, J., 1972: Influence of ground roughness on tornadoes: A laboratory simulation. J. Appl. Meteor., 11, 7275, doi:10.1175/1520-0450(1972)011<0072:IOGROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., R. J. Trapp, and H. Brooks, 2008: Does global warming influence tornado activity? Eos, Trans. Amer. Geophys. Union, 89, 553560, doi:10.1029/2008EO530001.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, K. Grala, and W. H. Cooke, 2014: Objective identification of tornado seasons and ideal spatial smoothing radii. Earth Interact., 18, 115, doi:10.1175/2013EI000559.1.

    • Search Google Scholar
    • Export Citation
  • Dunn, L. B., and S. V. Vasiloff, 2001: Tornadogenesis and operational considerations of the 11 August 1999 Salt Lake City tornado as seen from two different Doppler radars. Wea. Forecasting, 16, 377398, doi:10.1175/1520-0434(2001)016<0377:TAOCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by 1 March. Mon. Wea. Rev., 142, 259267, doi:10.1175/MWR-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., L. E. Michaels, K. N. Scheitlin, and I. J. Elsner, 2013a: The decreasing population bias in tornado reports. Wea. Climate Soc., 5, 221232, doi:10.1175/WCAS-D-12-00040.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., R. J. Murnane, T. H. Jagger, and H. M. Widen, 2013b: A spatial point process model for violent tornado occurrence in the U.S. Great Plains. Math. Geosci., 45, 667679, doi:10.1007/s11004-013-9458-1.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B., and R. Rotunno, 1986: A theory for the maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, doi:10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., J. B. Elsner, and H. M. Widen, 2015: A statistical model for regional tornado climate studies. PLoS One, 10, e0131876, doi:10.1371/journal.pone.0131876.

    • Search Google Scholar
    • Export Citation
  • Kahle, D., and H. Wickham, 2013: Ggmap: Spatial visualization with ggplot2. R J., 5 (1), 144161. [Available online at http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.]

    • Search Google Scholar
    • Export Citation
  • Karpman, D., M. A. R. Ferreira, and C. K. Wikle, 2013: A point process model for tornado report climatology. Statistics, 2, 18, doi:10.1002/sta4.14.

    • Search Google Scholar
    • Export Citation
  • Leslie, F. W., 1977: Surface roughness effects on suction vortex formation: A laboratory simulation. J. Atmos. Sci., 34, 10221027, doi:10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, doi:10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1962: A solution for 3 dimensional vortex flows with strong circulation. J. Fluid Mech., 14, 420432, doi:10.1017/S0022112062001330.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., R. Edwards, and G. J. Stumpf, 2014: An analysis of the 7 July 2004 Rockwell Pass, California, tornado: Highest-elevation tornado documented in the United States. Mon. Wea. Rev., 142, 39253943, doi:10.1175/MWR-D-14-00222.1.

    • Search Google Scholar
    • Export Citation
  • Prociv, K. A., 2012: Terrain and landcover effects of the southern Appalachian Mountains on the rotational low-level wind fields of supercell thunderstorms. M.S. thesis, Geography Dept., Virginia Polytechnic Institute and State University, 87 pp. [Available online at http://vtechworks.lib.vt.edu/handle/10919/32463?show=full.]

  • Rue, H., S. Martino, and N. Chopin, 2009: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. Roy. Stat. Soc., 71B, 319392, doi:10.1111/j.1467-9868.2008.00700.x.

    • Search Google Scholar
    • Export Citation
  • Rue, H., S. Martino, F. Lindgren, D. Simpson, A. Riebler, and E. T. Krainski, 2014: INLA: Functions which allow to perform full Bayesian analysis of latent Gaussian models using Integrated Nested Laplace Approximation, version 0.0-1417182342 R package. [Available online at http://www.r-inla.org/home.]

  • Schultz, D. M., C. C. Weiss, and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709, doi:10.1175/MWR3376.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, doi:10.1029/2011GL050368.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, S. J. Camargo, and J. T. Allen, 2014: An empirical relation between U.S. tornado activity and monthly environmental parameters. J. Climate, 27, 29832999, doi:10.1175/JCLI-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Toda, M., and M. Sugita, 2003: Single level turbulence measurements to determine roughness parameters of complex terrain. J. Geophys. Res., 108, 4363, doi:10.1029/2002JD002573.

    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, doi:10.1175/WAF910.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F., B. O. Connell, C. Brown, J. C. Guinan, and A. J. Grehan, 2007: Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod., 30, 335, doi:10.1080/01490410701295962.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to Meteorological Instruments and Methods of Observation. 7th ed. World Meteorological Organization, 681 pp. [Available online at https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 739 207 8
PDF Downloads 648 119 2