Evaluation of the Weather Research and Forecasting Model in the Durance Valley Complex Terrain during the KASCADE Field Campaign

Peter Christiaan Kalverla Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands, and Laboratoire de Modélisation des Transferts dans l‘Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France

Search for other papers by Peter Christiaan Kalverla in
Current site
Google Scholar
PubMed
Close
,
Gert-Jan Duine Laboratoire de Modélisation des Transferts dans l‘Environnement, CEA Cadarache, Saint-Paul-lès-Durance, and Laboratoire d‘Aérologie, University of Toulouse, Centre National de la Recherche Scientifique, Toulouse, France

Search for other papers by Gert-Jan Duine in
Current site
Google Scholar
PubMed
Close
,
Gert-Jan Steeneveld Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands

Search for other papers by Gert-Jan Steeneveld in
Current site
Google Scholar
PubMed
Close
, and
Thierry Hedde Laboratoire de Modélisation des Transferts dans l‘Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France

Search for other papers by Thierry Hedde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the winter of 2012/13, the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) observational campaign was carried out in southeastern France to characterize the wind and thermodynamic structure of the (stable) planetary boundary layer (PBL). Data were collected with two micrometeorological towers, a sodar, a tethered balloon, and radiosoundings. Here, this dataset is used to evaluate the representation of the boundary layer in the Weather Research and Forecasting (WRF) Model. In general, it is found that diurnal temperature range (DTR) is largely underestimated, there is a strong negative bias in both longwave radiation components, and evapotranspiration is overestimated. An illustrative case is subjected to a thorough model-physics evaluation. First, five PBL parameterization schemes and two land surface schemes are employed. A marginal sensitivity to PBL parameterization is found, and the sophisticated Noah land surface model represents the extremes in skin temperature better than does a more simple thermal diffusion scheme. In a second stage, sensitivity tests for land surface–atmosphere coupling (through parameterization of z0h/z0m), initial soil moisture content, and radiation parameterization were performed. Relatively strong surface coupling and low soil moisture content result in a larger sensible heat flux, deeper PBL, and larger DTR. The larger sensible heat flux is not supported by the observations, however. It turns out that, for the selected case, a combination of subsidence and warm-air advection is not accurately simulated, but this inaccuracy cannot fully explain the discrepancies found in the WRF simulations. The results of the sensitivity analysis reiterate the important role of initial soil moisture values.

Corresponding author address: P. C. Kalverla, Wageningen University, Meteorology and Air Quality Section, P.O. Box 47, 6700 AA Wageningen, Netherlands. E-mail: peter.kalverla@wur.nl

Abstract

In the winter of 2012/13, the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) observational campaign was carried out in southeastern France to characterize the wind and thermodynamic structure of the (stable) planetary boundary layer (PBL). Data were collected with two micrometeorological towers, a sodar, a tethered balloon, and radiosoundings. Here, this dataset is used to evaluate the representation of the boundary layer in the Weather Research and Forecasting (WRF) Model. In general, it is found that diurnal temperature range (DTR) is largely underestimated, there is a strong negative bias in both longwave radiation components, and evapotranspiration is overestimated. An illustrative case is subjected to a thorough model-physics evaluation. First, five PBL parameterization schemes and two land surface schemes are employed. A marginal sensitivity to PBL parameterization is found, and the sophisticated Noah land surface model represents the extremes in skin temperature better than does a more simple thermal diffusion scheme. In a second stage, sensitivity tests for land surface–atmosphere coupling (through parameterization of z0h/z0m), initial soil moisture content, and radiation parameterization were performed. Relatively strong surface coupling and low soil moisture content result in a larger sensible heat flux, deeper PBL, and larger DTR. The larger sensible heat flux is not supported by the observations, however. It turns out that, for the selected case, a combination of subsidence and warm-air advection is not accurately simulated, but this inaccuracy cannot fully explain the discrepancies found in the WRF simulations. The results of the sensitivity analysis reiterate the important role of initial soil moisture values.

Corresponding author address: P. C. Kalverla, Wageningen University, Meteorology and Air Quality Section, P.O. Box 47, 6700 AA Wageningen, Netherlands. E-mail: peter.kalverla@wur.nl
Save
  • Albergel, C., P. De Rosnay, G. Balsamo, L. Isaksen, and J. Munoz-Sabater, 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 14421460, doi:10.1175/JHM-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., E. Bazile, D. Legain, and D. Pino, 2014: Land surface spinup for episodic modeling. Atmos. Chem. Phys., 14, 81658172, doi:10.5194/acp-14-8165-2014.

    • Search Google Scholar
    • Export Citation
  • Baghi, R., and Coauthors, 2012: A new disjunct eddy-covariance system for BVOC flux measurements—Validation on CO2 and H2O fluxes. Atmos. Meas. Tech., 5, 31193132, doi:10.5194/amt-5-3119-2012.

    • Search Google Scholar
    • Export Citation
  • Billings, B. J., V. Grubišic, and R. D. Borys, 2006: Maintenance of a mountain valley cold pool: A numerical study. Mon. Wea. Rev., 134, 22662278, doi:10.1175/MWR3180.1.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99114, doi:10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Büttner, G., J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup, 2004: The CORINE land cover 2000 project. EARSeL eProc., 3, 331346. [Available online at http://www.eproceedings.org/static/vol03_3/03_3_buttner2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., J. R. Gyakum, and C. A. Lin, 2009: Observational study of wind channeling within the St. Lawrence River Valley. J. Appl. Meteor. Climatol., 48, 23412361, doi:10.1175/2009JAMC2061.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Santos, 2012: A sensitivity study of the WRF Model in wind simulation for an area of high wind energy. Environ. Model. Software, 33, 2334, doi:10.1016/j.envsoft.2012.01.019.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta Model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006, doi:10.1175/2010JHM1185.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Vol. 3, NASA Tech. Memo. 104606, 85 pp. [Available online at https://ia600502.us.archive.org/23/items/nasa_techdoc_19950009331/19950009331.pdf.]

  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386, doi:10.1175/JAM2322.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp., doi:10.5065/D63N21CH.

  • Cuxart, J., M. Jiménez, and D. Martínez, 2007: Nocturnal meso-beta basin and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 918932, doi:10.1175/MWR3329.1.

    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C., and A. A. M. Holtslag, 1999: Estimation of surface radiation and energy flux densities from single-level weather data. J. Appl. Meteor., 38, 526540, doi:10.1175/1520-0450(1999)038<0526:EOSRAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., and H. Tennekes, 1984: Entrainment effects in the well-mixed atmospheric boundary layer. Boundary Layer Structure: Modeling and Application to Air Pollution and Wind Energy, H. Kaplan and N. Dinar, Eds., Springer, 75–105. [Available online at http://www.springer.com/us/book/9789027718778.]

  • Drobinski, P., and Coauthors, 2005: Summer mistral at the exit of the Rhône Valley. Quart. J. Roy. Meteor. Soc., 131, 353375, doi:10.1256/qj.04.63.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model User’s Workshop, Boulder, CO, UCAR, 49–50. [Available online at http://www2.mmm.ucar.edu/mm5/lsm/soil.pdf.]

  • Duine, G.-J., 2015: Characterization of down-valley winds in stable stratification from the KASCADE field campaign and WRF mesoscale simulations. Ph.D. thesis, Université Toulouse III Paul Sabatier, 275 pp. [Available online at https://tel.archives-ouvertes.fr/tel-01263986/document.]

  • Duine, G.-J., and Coauthors, 2014: Stable boundary layer characterization in an orographic complex region: The field measurement campaign KASCADE. 21st Symp. on Boundary Layers and Turbulence, Leeds, United Kingdom, Amer. Meteor. Soc., 8B.2. [Available online at https://ams.confex.com/ams/21BLT/webprogram/Handout/Paper245848/BLT_2014_Duine_v5.pdf.]

  • Ganteaume, A., J. Marielle, L.-M. Corinne, C. Thomas, and B. Laurent, 2009: Fuel characterization and effects of wildfire recurrence on vegetation structure on limestone soils in southeastern France. For. Ecol. Manage., 258, S15S23, doi:10.1016/j.foreco.2009.07.021.

    • Search Google Scholar
    • Export Citation
  • García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501514, doi:10.1002/qj.1976.

    • Search Google Scholar
    • Export Citation
  • Gsella, A., A. de Meij, A. Kerschbaumer, E. Reimer, P. Thunis, and C. Cuvelier, 2014: Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmos. Environ., 89, 797806, doi:10.1016/j.atmosenv.2014.03.019.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., and T. R. Nehrkorn, 2010: Assessment of radiation options in the Advanced Research WRF weather forecast model. Proc. First Atmospheric System Research Science Team Meeting, Bethesda, MD, U.S. Department of Energy Office of Science, 1519. [Available online at http://ams.confex.com/ams/pdfpapers/171112.pdf.]

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Ingwersen, J., and Coauthors, 2011: Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric. For. Meteor., 151, 345355, doi:10.1016/j.agrformet.2010.11.010.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2013: On the ability of the WRF Model to reproduce the surface wind direction over complex terrain. J. Appl. Meteor. Climatol., 52, 16101617, doi:10.1175/JAMC-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF Model. Adv. Meteor., 167436, doi:10.1155/2010/167436.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karlickỳ, J., 2013: Regional climate simulations with WRF model. Proc. WDS’13: Part III: Physics, Prague, Czech Republic, Charles University, 80–84. [Available online at http://www.mff.cuni.cz/veda/konference/wds/proc/pdf13/WDS13_314_f8_Karlicky.pdf.]

  • Kleczek, M. A., G.-J. Steeneveld, and A. A. M. Holtslag, 2014: Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up. Bound.-Layer Meteor., 152, 213243, doi:10.1007/s10546-014-9925-3.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 10121021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010: Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW–Noah modeling system. Part I: Surface fluxes and CBL structure and evolution along the eastern track. Mon. Wea. Rev., 138, 722744, doi:10.1175/2009MWR3003.1.

    • Search Google Scholar
    • Export Citation
  • Lindvall, J., and G. Svensson, 2015: The diurnal temperature range in the CMIP5 models. Climate Dyn., 44, 405421, doi:10.1007/s00382-014-2144-2.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, doi:10.5194/acp-14-10931-2014.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Search Google Scholar
    • Export Citation
  • Medeiros, L. E., and D. R. Fitzjarrald, 2014: Stable boundary layer in complex terrain. Part I: Linking fluxes and intermittency to an average stability index. J. Appl. Meteor. Climatol., 53, 21962215, doi:10.1175/JAMC-D-13-0345.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Passner, J. E., and W. S. M. Range, 2007: Performance of the WRF-ARW in the complex terrain of Salt Lake City. 12th Conf. on Mesoscale Processes, Waterville Valley, NH, Amer. Meteor. Soc., P2.17. [Available online at https://ams.confex.com/ams/pdfpapers/125931.pdf.]

  • Pineda, N., O. Jorba, J. Jorge, and J. M. Baldasano, 2004: Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: Application to a mesoscale meteorological model. Int. J. Remote Sens., 25, 129143, doi:10.1080/0143116031000115201.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Price, J., and Coauthors, 2011: COLPEX: Field and numerical studies over a region of small hills. Bull. Amer. Meteor. Soc., 92, 16361650, doi:10.1175/2011BAMS3032.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J. J., C. Saulo, and J. Nogués-Paegle, 2010: WRF Model sensitivity to choice of parameterization over South America: Validation against surface variables. Mon. Wea. Rev., 138, 33423355, doi:10.1175/2010MWR3358.1.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., M. Tice, J. J. Cassano, and M. D. Shupe, 2012: Evaluation of WRF radiation and microphysics parameterizations for use in the polar regions. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A41I-0091. [Available online at http://abstractsearch.agu.org/meetings/2012/FM/A41I-0091.html.]

  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., S.-Y. Hong, and J. Dudhia, 2012: Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations. Mon. Wea. Rev., 140, 664682, doi:10.1175/MWR-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Front. Environ. Sci., 2, doi:10.3389/fenvs.2014.00041.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., T. Mauritsen, E. I. F. de Bruijn, J. Vilà-Guerau de Arellano, G. Svensson, and A. A. M. Holtslag, 2008: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869887, doi:10.1175/2007JAMC1702.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., L. F. Tolk, A. F. Moene, O. K. Hartogensis, W. Peters, and A. A. M. Holtslag, 2011: Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget. J. Geophys. Res., 116, D23114, doi:10.1029/2011JD016303.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 480 pp.

  • Sterk, H. A. M., G.-J. Steeneveld, and A. A. M. Holtslag, 2013: The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J. Geophys. Res. Atmos., 118, 11991217, doi:10.1002/jgrd.50158.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Stull, R. B., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. Bound.-Layer Meteor., 62, 2196, doi:10.1007/BF00705546.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and J. Lindvall, 2015: Evaluation of near-surface variables and the vertical structure of the boundary layer in CMIP5 models. J. Climate, 28, 52335253, doi:10.1175/JCLI-D-14-00596.1.

    • Search Google Scholar
    • Export Citation
  • Tastula, E.-M., B. Galperin, S. Sukoriansky, A. Luhar, and P. Anderson, 2015: The importance of surface layer parameterization in modeling of stable atmospheric boundary layers. Atmos. Sci. Lett., 16, 8388, doi:10.1002/asl2.525.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/pdfpapers/69061.pdf.]

  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325, doi:10.1175/2010WAF2222426.1.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Search Google Scholar
    • Export Citation
  • van der Velde, I. R., G.-J. Steeneveld, B. G. J. Wichers Schreur, and A. A. M. Holtslag, 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 42374253, doi:10.1175/2010MWR3427.1.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J., A. Moene, G. Steeneveld, P. Baas, F. Bosveld, and A. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, doi:10.1175/2010JAS3289.1.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Warrach-Sagi, K., T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, 2013: Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: Precipitation in Germany. Climate Dyn., 41, 755774, doi:10.1007/s00382-013-1727-7.

    • Search Google Scholar
    • Export Citation
  • Weller, H., and A. Shahrokhi, 2014: Curl-free pressure gradients over orography in a solution of the fully compressible Euler equations with implicit treatment of acoustic and gravity waves. Mon. Wea. Rev., 142, 44394457, doi:10.1175/MWR-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, doi:10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wrathall, J. E., 1985: The mistral and forest fires in Provence–Côte d’Azur, southern France. Weather, 40, 119124, doi:10.1002/j.1477-8696.1985.tb07493.x.

    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF Model. J. Geophys. Res., 117, D12103, doi:10.1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J. Appl. Meteor. Climatol., 47, 276290, doi:10.1175/2007JAMC1547.1.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon. Wea. Rev., 130, 14231432, doi:10.1175/1520-0493(2002)130<1423:AIMFCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, Springer, 35–119.

  • Zilitinkevich, S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution III: Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Computational Mechanics, 53–60.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 105 15
PDF Downloads 290 49 5