Quantitative Assessment of Human Wind Speed Overestimation

Paul W. Miller Department of Geography, The University of Georgia, Athens, Georgia

Search for other papers by Paul W. Miller in
Current site
Google Scholar
PubMed
Close
,
Alan W. Black IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Alan W. Black in
Current site
Google Scholar
PubMed
Close
,
Castle A. Williams Department of Geography, The University of Georgia, Athens, Georgia

Search for other papers by Castle A. Williams in
Current site
Google Scholar
PubMed
Close
, and
John A. Knox Department of Geography, The University of Georgia, Athens, Georgia

Search for other papers by John A. Knox in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Human wind reports are a vital supplement to the relatively sparse network of automated weather stations in the United States, especially for localized convective winds. In this study, human wind estimates recorded in Storm Data between 1996 and 2013 were compared with instrumentally observed wind speeds from the Global Historical Climatology Network (GHCN). Nonconvective wind events in areas of flat terrain within the continental United States served as the basis for this analysis because of the relative spatial homogeneity of wind fields in these meteorological and geographic settings. The distribution of 6801 GHCN-measured gust factors (GF), defined here as the ratio of the daily maximum gust to the daily average wind, provided the reference upon which human gust reports were judged. GFs were also calculated for each human estimate by dividing the estimated gust by the GHCN average wind speed on that day. Human-reported GFs were disproportionately located in the upper tail of the observed GF distribution, suggesting that humans demonstrate a tendency to report statistically improbable wind gusts. As a general rule of thumb, humans overestimated nonconvective wind GFs by approximately one-third.

Corresponding author address: Paul Miller, Dept. of Geography, The University of Georgia, Rm. 204, 210 Field St., Athens, GA 30602. E-mail: paul.miller@uga.edu

Abstract

Human wind reports are a vital supplement to the relatively sparse network of automated weather stations in the United States, especially for localized convective winds. In this study, human wind estimates recorded in Storm Data between 1996 and 2013 were compared with instrumentally observed wind speeds from the Global Historical Climatology Network (GHCN). Nonconvective wind events in areas of flat terrain within the continental United States served as the basis for this analysis because of the relative spatial homogeneity of wind fields in these meteorological and geographic settings. The distribution of 6801 GHCN-measured gust factors (GF), defined here as the ratio of the daily maximum gust to the daily average wind, provided the reference upon which human gust reports were judged. GFs were also calculated for each human estimate by dividing the estimated gust by the GHCN average wind speed on that day. Human-reported GFs were disproportionately located in the upper tail of the observed GF distribution, suggesting that humans demonstrate a tendency to report statistically improbable wind gusts. As a general rule of thumb, humans overestimated nonconvective wind GFs by approximately one-third.

Corresponding author address: Paul Miller, Dept. of Geography, The University of Georgia, Rm. 204, 210 Field St., Athens, GA 30602. E-mail: paul.miller@uga.edu
Save
  • Agdas, D., G. D. Webster, and F. J. Masters, 2012: Wind speed perception and risk. PLoS One, 7, e49944, doi:10.1371/journal.pone.0049944.

    • Search Google Scholar
    • Export Citation
  • Ágústsson, H., and H. Ólafsson, 2004: Mean gust factors in complex terrain. Meteor. Z., 13, 149155, doi:10.1127/0941-2948/2004/0013-0149.

    • Search Google Scholar
    • Export Citation
  • Ashcroft, J., 1994: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed. J. Wind Eng. Ind. Aerodyn., 53, 331355, doi:10.1016/0167-6105(94)90090-6.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, doi:10.1175/2007WAF2007004.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, doi:10.1175/2007JAMC1689.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and C. W. Gilson, 2009: A reassessment of U.S. lightning mortality. Bull. Amer. Meteor. Soc., 90, 15011518, doi:10.1175/2009BAMS2765.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 11401147, doi:10.1175/WAF1031.1.

    • Search Google Scholar
    • Export Citation
  • Biau, D. J., B. M. Jolles, and R. Porcher, 2010: P-value and the theory of hypothesis testing: An explanation for new researchers. Clin. Orthop. Relat. Res., 468, 885892, doi:10.1007/s11999-009-1164-4.

    • Search Google Scholar
    • Export Citation
  • Black, A. W., and W. S. Ashley, 2010: Nontornadic convective wind fatalities in the United States. Nat. Hazards, 54, 355366, doi:10.1007/s11069-009-9472-2.

    • Search Google Scholar
    • Export Citation
  • Black, A. W., and W. S. Ashley, 2011: The relationship between tornadic and nontornadic convective wind fatalities and warnings. Wea. Climate Soc., 3, 3147, doi:10.1175/2010WCAS1094.1.

    • Search Google Scholar
    • Export Citation
  • Black, A. W., and T. Mote, 2015: Characteristics of winter-precipitation-related transportation fatalities in the United States. Wea. Climate Soc., 7, 133145, doi:10.1175/WCAS-D-14-00011.1.

    • Search Google Scholar
    • Export Citation
  • Coren, S., and J. Miller, 1974: Size contrast as a function of figural similarity. Percept. Psychophys., 16, 355357, doi:10.3758/BF03203955.

    • Search Google Scholar
    • Export Citation
  • Curtis, R. H., 1897: An attempt to determine the velocity equivalents of wind-forces estimated by Beaufort’s scale. Quart. J. Roy. Meteor. Soc., 23, 2461, doi:10.1002/qj.49702310104.

    • Search Google Scholar
    • Export Citation
  • Davis, F. K., and H. Newstein, 1968: The variation of gust factors with mean wind speed and with height. J. Appl. Meteor., 7, 372378, doi:10.1175/1520-0450(1968)007<0372:TVOGFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewitt, B., B. Fischhoff, A. Davis, and S. Broomell, 2015: Environmental risk perception from visual cues: The psychophysics of tornado risk perception. Environ. Res. Lett., 10, 124009, doi:10.1088/1748-9326/10/12/124009.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, A. R. Moller, and H. E. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544557, doi:10.1175/1520-0434(1999)014<0544:SSAPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Durst, C. S., 1960: Wind speeds over short periods of time. Meteor. Mag., 89, 181186.

  • Fenneman, N. M., 1928: Physiographic divisions of the United States. Ann. Assoc. Amer. Geogr., 18, 261353, doi:10.1080/00045602809357034.

    • Search Google Scholar
    • Export Citation
  • Gall, M., K. A. Borden, and S. L. Cutter, 2009: When do losses count? Bull. Amer. Meteor. Soc., 90, 799809, doi:10.1175/2008BAMS2721.1.

    • Search Google Scholar
    • Export Citation
  • Grommet, E. K., S. Droit-Volet, S. Gil, N. S. Hemmes, A. H. Baker, and B. L. Brown, 2011: Time estimation of fear cues in human observers. Behav. Processes, 86, 8893, doi:10.1016/j.beproc.2010.10.003.

    • Search Google Scholar
    • Export Citation
  • Hekmat, H., 1987: Origins and development of human fear reactions. J. Anxiety Disord., 1, 197218, doi:10.1016/0887-6185(87)90026-0.

  • Higgins, J. J., 2004: An Introduction to Modern Nonparametric Statistics. Brooks/Cole-Thomson Learning, 384 pp.

  • Hunt, J. C. R., E. C. Poulton, and J. C. Mumford, 1976: The effects of wind on people; new criteria based on wind tunnel experiments. Build. Environ., 11, 1528, doi:10.1016/0360-1323(76)90015-9.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, H., 1983: Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions. J. Wind Eng. Ind. Aerodyn., 13, 5566, doi:10.1016/0167-6105(83)90128-9.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. S., 1978: The evaluation of windy environments. Build. Environ., 13, 251260, doi:10.1016/0360-1323(78)90016-1.

  • Klenow, D. J., and J. L. Reibestein, 2014: Eyes to the sky: Situating the role of storm spotters in the warning and response network. J. Homeland Secur. Emerg. Manage., 11, 437458.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., J. D. Frye, J. D. Durkee, and C. M. Fuhrmann, 2011: Non-convective high winds associated with extratropical cyclones. Geogr. Compass, 5, 6389, doi:10.1111/j.1749-8198.2010.00395.x.

    • Search Google Scholar
    • Export Citation
  • Krayer, W. R., and R. D. Marshall, 1992: Gust factors applied to hurricane winds. Bull. Amer. Meteor. Soc., 73, 613618, doi:10.1175/1520-0477(1992)073<0613:GFATHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • López, R. E., R. L. Holle, T. A. Heitkamp, M. Boyson, M. Cherington, and K. Langford, 1993: The underreporting of lightning injuries and deaths in Colorado. Bull. Amer. Meteor. Soc., 74, 21712178, doi:10.1175/1520-0477(1993)074<2171:TUOLIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • López, R. E., R. L. Holle, and T. A. Heitkamp, 1995: Lightning casualties and property damage in Colorado from 1950 to 1991 based on Storm Data. Wea. Forecasting, 10, 114126, doi:10.1175/1520-0434(1995)010<0114:LCAPDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCarthy, D. H., 2002: The role of ground-truth reports in the warning decision-making process during the 3 May 1999 Oklahoma tornado outbreak. Wea. Forecasting, 17, 647649, doi:10.1175/1520-0434(2002)017<0647:TROGTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melbourne, W. H., 1978: Criteria for environmental wind conditions. J. Wind Eng. Ind. Aerodyn., 3, 241249, doi:10.1016/0167-6105(78)90013-2.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012a: An overview of the Global Historical Climatology Network-daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012b: Global Historical Climatology Network- Daily (GHCN-Daily), version 3.20. National Centers for Environmental Information, accessed 20 Mar 2015, doi:10.7289/V5D21VHZ.

  • Miller, P. W., A. Ellis, and S. Keighton, 2015: The utility of total lightning trends in diagnosing single-cell thunderstorm severity: Examples from the central Appalachians region. J. Oper. Meteor., 3, 8298, doi:10.15191/nwajom.2015.0308.

    • Search Google Scholar
    • Export Citation
  • Miller, P. W., A. W. Black, C. A. Williams, and J. A. Knox, 2016: Maximum wind gusts associated with human-reported nonconvective wind events and a comparison to current warning issuance criteria. Wea. Forecasting, 31, 451465, doi:10.1175/WAF-D-15-0112.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2013: Storm Data FAQ page. [Available online at http://www.ncdc.noaa.gov/stormevents/faq.jsp.]

  • NOAA, 1998: Automated surface observation systems (ASOS) user’s guide. NOAA, 74 pp. [Available online at http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf.]

  • NWS, 2011: Weather spotter’s field guide: A guide to being a SKYWARN spotter. NOAA/National Weather Service, 68 pp. [Available online at http://www.nws.noaa.gov/os/brochures/SGJune6-11.pdf.]

  • Office of Inspections and Program Evaluations, 1998: NWS’s verification system for severe and hazardous weather forecasting needs modernization. Inspection Rep. IPE-9255, U.S. Department of Commerce, 79 pp. [Available online at https://www.oig.doc.gov/OIGPublications/NOAA-IPE-09255-01-1998.pdf.]

  • Pluijms, J., R. Cañal-Bruland, W. Bergmann Tiest, F. Mulder, and G. Savelsbergh, 2015: Expertise effects in cutaneous wind perception. Atten. Percept. Psychophys., 77, 21212133, doi:10.3758/s13414-015-0893-6.

    • Search Google Scholar
    • Export Citation
  • Proffitt, D., M. Bhalla, R. Gossweiler, and J. Midgett, 1995: Perceiving geographical slant. Psychon. Bull. Rev., 2, 409428, doi:10.3758/BF03210980.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. Conrick, C. Miller, J. Tytell, and R. J. Barthelmie, 2014: Intense and extreme wind speeds observed by anemometer and seismic networks: An eastern U.S. case study. J. Appl. Meteor. Climatol., 53, 24172429, doi:10.1175/JAMC-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Rachman, S., and M. Cuk, 1992: Fearful distortions. Behav. Res. Ther., 30, 583589, doi:10.1016/0005-7967(92)90003-Y.

  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, R. M., and T. W. Schmidlin, 2002: Climatology of blizzards in the conterminous United States, 1959–2000. J. Climate, 15, 17651772, doi:10.1175/1520-0442(2002)015<1765:COBITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherif, M., D. Taub, and C. I. Hovland, 1958: Assimilation and contrast effects of anchoring stimuli on judgments. J. Exp. Psychol., 55, 150155, doi:10.1037/h0048784.

    • Search Google Scholar
    • Export Citation
  • Simmons, J. P., R. A. LeBoeuf, and L. D. Nelson, 2010: The effect of accuracy motivation on anchoring and adjustment: Do people adjust from provided anchors? J. Pers. Soc. Psychol., 99, 917932, doi:10.1037/a0021540.

    • Search Google Scholar
    • Export Citation
  • Simpson, G., 1906: The Beaufort scale of wind-force. Report of the Director of the Meteorological Office upon an inquiry into the relation between the estimates of wind-force according to Admiral Beaufort’s scale and the velocities recorded by anemometers belonging to the Office. Meteorological Office, London, United Kingdom, 54 pp. [Available online at https://play.google.com/books/reader?id=CcQoAQAAMAAJ&printsec=frontcover&output=reader&hl=en&pg=GBS.PP1.]

  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, doi:10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Stefanucci, J. K., and D. R. Proffitt, 2009: The roles of altitude and fear in the perception of height. J. Exp. Psychol. Hum. Percept. Perform., 35, 424438, doi:10.1037/a0013894.

    • Search Google Scholar
    • Export Citation
  • Strack, F., and T. Mussweiler, 1997: Explaining the enigmatic anchoring effect: Mechanisms of selective accessibility. J. Pers. Soc. Psychol., 73, 437446, doi:10.1037/0022-3514.73.3.437.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Tversky, A., and D. Kahneman, 1974: Judgment under uncertainty: Heuristics and biases. Science, 185, 11241131, doi:10.1126/science.185.4157.1124.

    • Search Google Scholar
    • Export Citation
  • UCAR, 2011: SKYWARN spotter convective basics. [Available online at https://www.meted.ucar.edu/spotter_training/convective/index.htm.]

  • Weggel, J. R., 1999: Maximum daily wind gusts related to mean daily wind speed. J. Struct. Eng., 125, 465468, doi:10.1061/(ASCE)0733-9445(1999)125:4(465).

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., J. Hart, and P. Janish, 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 11B.2. [Available online at https://ams.confex.com/ams/pdfpapers/47494.pdf.]

  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, doi:10.1016/S0169-8095(99)00011-3.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. W. Mitchell, J. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wundt, W., 1980: Outlines of Psychology. Springer, 365 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 468 143 16
PDF Downloads 281 78 14