• AchutaRao, K., , and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27, 115, doi:10.1007/s00382-006-0119-7.

    • Search Google Scholar
    • Export Citation
  • Baker, A. C., , P. W. Glynn, , and B. Riegl, 2008: Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal Shelf Sci., 80, 435471, doi:10.1016/j.ecss.2008.09.003.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , N. Graham, , S. Pazan, , W. White, , M. Latif, , and M. Flügel, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6, 15451566, doi:10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellwood, D. R., , T. P. Hughes, , C. Folke, , and M. Nyström, 2004: Confronting the coral reef crisis. Nature, 429, 827833, doi:10.1038/nature02691.

    • Search Google Scholar
    • Export Citation
  • Berkelmans, R., , G. De’ath, , S. Kininmonth, , and W. J. Skirving, 2004: A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. Coral Reefs, 23, 7483, doi:10.1007/s00338-003-0353-y.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, B. E., 1997: Coral bleaching: Causes and consequences. Coral Reefs, 16, S129S138, doi:10.1007/s003380050249.

  • Bryant, D., , L. Burke, , J. McManus, , and M. Spalding, 1998: Reefs at Risk: A Map-Based Indicator of Threats to the World’s Coral Reefs. World Resources Institute, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Colman, R., and et al. , 2005: BMRC atmospheric model (BAM) version 3.0: Comparison with mean climatology. BMRC Research Rep. 108, 66 pp.

  • Cottrill, A., and et al. , 2013: Seasonal forecasting in the Pacific using the coupled model POAMA-2. Wea. Forecasting, 28, 668680, doi:10.1175/WAF-D-12-00072.1.

    • Search Google Scholar
    • Export Citation
  • Diaz-Pulido, G., and et al. , 2009: Doom and boom on a resilient reef: Climate change, algal overgrowth and coral recovery. PLoS One, 4, e5239, doi:10.1371/journal.pone.0005239.

    • Search Google Scholar
    • Export Citation
  • Eakin, C. M., and et al. , 2010: Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS One, 5, e13969, doi:10.1371/journal.pone.0013969.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., , M. Meinshausen, , A. Golly, , M. Mengel, , K. Lebek, , S. D. Donner, , and O. Hoegh-Guldberg, 2013: Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Climate Change, 2, 165170, doi:10.1038/nclimate1674.

    • Search Google Scholar
    • Export Citation
  • Glynn, P. W., 1991: Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol. Evol., 6, 175179, doi:10.1016/0169-5347(91)90208-F.

    • Search Google Scholar
    • Export Citation
  • Glynn, P. W., 1993: Coral reef bleaching: Ecological perspectives. Coral Reefs, 12, 117, doi:10.1007/BF00303779.

  • Goreau, T. J., 1990: Coral bleaching in Jamaica. Nature, 343, 417417, doi:10.1038/343417a0.

  • Goreau, T. J., , and R. L. Hayes, 1994: Coral bleaching and ocean “hot spots.” Ambio, 23, 176180.

  • Griesser, A. G., , and C. M. Spillman, 2012: SST forecast skill of the new intra-seasonal configuration of POAMA-2. CAWCR Res. Lett., 8, 1016. [Available online at http://www.cawcr.gov.au/researchletters/CAWCR_Research_Letters_8.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hatcher, B. G., 1988: Coral reef primary productivity: A beggar’s banquet. Trends Ecol. Evol., 3, 106111, doi:10.1016/0169-5347(88)90117-6.

    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O., 1999: Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res., 50, 839866, doi:10.1071/MF99078.

    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O., , and G. J. Smith, 1989: The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol., 129, 279303, doi:10.1016/0022-0981(89)90109-3.

    • Search Google Scholar
    • Export Citation
  • Hudson, D. A., , O. Alves, , H. H. Hendon, , and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, doi:10.1007/s00382-010-0763-9.

    • Search Google Scholar
    • Export Citation
  • Hudson, D. A., , A. G. Marshall, , Y. Yin, , O. Alves, , and H. H. Hendon, 2013: Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev., 141, 44294449, doi:10.1175/MWR-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., , and J. H. Connell, 1999: Multiple stressors on coral reefs: A long-term perspective. Limnol. Oceanogr., 44, 932940, doi:10.4319/lo.1999.44.3_part_2.0932.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., and et al. , 2007: Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol., 17, 360365, doi:10.1016/j.cub.2006.12.049.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., , and N. Bowler, 2009: On the reliability and calibration of ensemble forecasts. Mon. Wea. Rev., 137, 17171720, doi:10.1175/2009MWR2715.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., , A. E. Strong, , and W. Skirving, 2003: Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos, Trans. Amer. Geophys. Union, 84, 137141, doi:10.1029/2003EO150001.

    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 2012: Binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 37–73.

  • Maynard, J. A., , J. E. Johnson, , P. A. Marshall, , C. M. Eakin, , G. Goby, , H. Schuttenberg, , and C. M. Spillman, 2009: A strategic framework for responding to coral bleaching events in a changing climate. Environ. Manage., 44, 111, doi:10.1007/s00267-009-9295-7.

    • Search Google Scholar
    • Export Citation
  • Muscatine, L., , and J. W. Porter, 1977: Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. BioScience, 27, 454460, doi:10.2307/1297526.

    • Search Google Scholar
    • Export Citation
  • Pandolfi, J. M., , S. R. Connolly, , D. J. Marshall, , and A. L. Cohen, 2011: Projecting coral reef futures under global warming and ocean acidification. Science, 333, 418422, doi:10.1126/science.1204794.

    • Search Google Scholar
    • Export Citation
  • ReefBase, 2014: ReefBase: A global information system for coral reefs. [Available online at http://www.reefbase.org].

  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2012: Economic value and skill. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed. I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 165–186.

  • Riegl, B. M., , S. J. Purkis, , A. S. Al-Cibahy, , M. A. Abdel-Moati, , and O. Hoegh-Guldberg, 2011: Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS One, 6, e24802, doi:10.1371/journal.pone.0024802.

    • Search Google Scholar
    • Export Citation
  • Sadovy, Y., 2005: Trouble on the reef: The imperative for managing vulnerable and valuable fisheries. Fish Fish., 6, 167185, doi:10.1111/j.1467-2979.2005.00186.x.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., , J. S. Godfrey, , P. C. McIntosh, , and G. A. Meyers, 1997: A global ocean general circulation model for climate variability studies. CSIRO Marine Laboratories Rep. 227, 60 pp.

  • Shukla, J., and et al. , 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81, 25932606, doi:10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spillman, C. M., 2011a: Operational real-time seasonal forecasts for coral reef management. J. Oper. Oceanogr., 4, 1322, doi:10.1080/1755876X.2011.11020119.

    • Search Google Scholar
    • Export Citation
  • Spillman, C. M., 2011b: Advances in forecasting coral bleaching conditions for reef management. Bull. Amer. Meteor. Soc., 92, 15861591, doi:10.1175/BAMS-D-11-00065.1.

    • Search Google Scholar
    • Export Citation
  • Spillman, C. M., , and O. Alves, 2009: Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef. Coral Reefs, 28, 197206, doi:10.1007/s00338-008-0438-8.

    • Search Google Scholar
    • Export Citation
  • Spillman, C. M., , O. Alves, , and D. A. Hudson, 2011: Seasonal prediction of thermal stress accumulation for coral bleaching in the tropical oceans. Mon. Wea. Rev., 139, 317331, doi:10.1175/2010MWR3526.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., , L. Terray, , and A. Piacentini, 2000: OASIS 2.4 ocean atmospheric sea ice soil users guide, version 2.4. CERFACS Tech. Rep. TR/CMGC/00/10.

  • Van Oldenborgh, G. J., , S. Y. Philip, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Search Google Scholar
    • Export Citation
  • Van Woesik, R., , K. Sakai, , A. Ganase, , and Y. Loya, 2011: Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser., 434, 6776, doi:10.3354/meps09203.

    • Search Google Scholar
    • Export Citation
  • Vannière, B., , E. Guilyardi, , G. Madec, , F. J. Doblas-Reyes, , and S. Woolnough, 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963981, doi:10.1007/s00382-012-1429-6.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , O. Alves, , and N. Smith, 2005: BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC Research Rep. 107, 30 pp.

  • Wang, G., , D. A. Hudson, , Y. Yin, , O. Alves, , H. H. Hendon, , S. Langford, , G. Liu, , and F. Tseitkin, 2011: POAMA-2 SST skill assessment and beyond. CAWCR Res. Lett., 6, 40–46. [Available online at http://www.cawcr.gov.au/researchletters/CAWCR_Research_Letters_6.pdf.]

  • Wilkinson, C. R., 1998: Status of coral reefs of the world: 1998. Australian Institute of Marine Science Rep., 181 pp. [Available online at http://epubs.aims.gov.au/handle/11068/3320.]

  • Wilkinson, C. R., 2004: Status of coral reefs of the world: 2004. Australian Institute of Marine Science Rep., 572 pp. [Available online at http://epubs.aims.gov.au/handle/11068/6840.]

  • Wilkinson, C. R., , and D. Souter, Eds., 2008: Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre Rep., 152 pp. [Available online at http://www.coris.noaa.gov/activities/caribbean_rpt/.]

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Woodcock, F., 1976: The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Wea. Rev., 104, 12091214, doi:10.1175/1520-0493(1976)104<1209:TEOYFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., , O. Alves, , and P. R. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808, doi:10.1175/2010MWR3419.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , G. Wang, , H. H. Hendon, , and O. Alves, 2011: Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model. Climate Dyn., 36, 12911302, doi:10.1007/s00382-010-0823-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 3
PDF Downloads 24 24 5

Assessing the Skill and Value of Seasonal Thermal Stress Forecasts for Coral Bleaching Risk in the Western Pacific

View More View Less
  • 1 Australian Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Over the last 30 years, coral reefs around the world have been under considerable stress because of increasing anthropogenic pressures, overfishing, pollution, and climate change. A primary stress factor is anomalously warm water events, which can cause mass coral bleaching and widespread reef damage. Forecasts of sea surface temperature (SST) and the associated risk of coral bleaching can assist managers, researchers, and other stakeholders in monitoring and managing coral reef resources. At the Australian Bureau of Meteorology, monthly forecasts of SST and thermal stress metrics have been developed that are based on a dynamical seasonal prediction system known as the Predictive Ocean Atmosphere Model for Australia (POAMA). To support the effective use of these forecasts in risk-based decision-making frameworks in the western and central tropical Pacific Ocean, the skill of these forecast tools in this region was assessed using several categorical forecast skill scores. It was found that the model provides SST forecasts with statistically significant skill up to 8 months in advance (correlation coefficient > 0.4; p = 0.05) across the region. The highest skill (r > 0.9) was achieved over the central equatorial Pacific Ocean, likely as a result of this region’s strong relationship with the El Niño–Southern Oscillation (ENSO). Potential forecast value was assessed using a simplified cost–loss ratio decision model, which indicated that POAMA’s seasonal hot-spot thermal stress forecasts can provide valuable information to reef management and policy makers in the western Pacific region.

Denotes Open Access content.

Corresponding author address: Aurel Griesser, Australian Bureau of Meteorology, GPO Box 1289, Melbourne, VIC 3001, Australia. E-mail: a.griesser@bom.gov.au

Abstract

Over the last 30 years, coral reefs around the world have been under considerable stress because of increasing anthropogenic pressures, overfishing, pollution, and climate change. A primary stress factor is anomalously warm water events, which can cause mass coral bleaching and widespread reef damage. Forecasts of sea surface temperature (SST) and the associated risk of coral bleaching can assist managers, researchers, and other stakeholders in monitoring and managing coral reef resources. At the Australian Bureau of Meteorology, monthly forecasts of SST and thermal stress metrics have been developed that are based on a dynamical seasonal prediction system known as the Predictive Ocean Atmosphere Model for Australia (POAMA). To support the effective use of these forecasts in risk-based decision-making frameworks in the western and central tropical Pacific Ocean, the skill of these forecast tools in this region was assessed using several categorical forecast skill scores. It was found that the model provides SST forecasts with statistically significant skill up to 8 months in advance (correlation coefficient > 0.4; p = 0.05) across the region. The highest skill (r > 0.9) was achieved over the central equatorial Pacific Ocean, likely as a result of this region’s strong relationship with the El Niño–Southern Oscillation (ENSO). Potential forecast value was assessed using a simplified cost–loss ratio decision model, which indicated that POAMA’s seasonal hot-spot thermal stress forecasts can provide valuable information to reef management and policy makers in the western Pacific region.

Denotes Open Access content.

Corresponding author address: Aurel Griesser, Australian Bureau of Meteorology, GPO Box 1289, Melbourne, VIC 3001, Australia. E-mail: a.griesser@bom.gov.au
Save