• Augustine, J. A., , G. B. Hodges, , C. R. Cornwall, , J. J. Michalsky, , and C. I. Medina, 2005: An update on SURFRAD: The GCOS surface radiation budget network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, doi:10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2006: Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 316, doi:10.1007/s10750-005-1802-0.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , A. Hall, , and K. N. Liou, 2006: Application of three-dimensional solar radiative transfer to mountains. J. Geophys. Res., 111, D21111, doi:10.1029/2006JD007163.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, 38 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990060930.pdf.]

  • Chou, M.-D., , K.-T. Lee, , and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107, 4600, doi:10.1029/2002JD002061.

    • Search Google Scholar
    • Export Citation
  • Cline, D. W., 1997: Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site. Water Resour. Res., 33, 689702, doi:10.1029/97WR00026.

    • Search Google Scholar
    • Export Citation
  • Curry, J., , W. B. Rossow, , D. Randall, , and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., , and J. Frew, 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 28, 963969, doi:10.1109/36.58986.

    • Search Google Scholar
    • Export Citation
  • Dubayah, R., , J. Dozier, , and F. W. Davis, 1990: Topographic distribution of clear-sky radiation over the Konza Prairie, Kansas. Water Resour. Res., 26, 679690, doi:10.1029/WR026i004p00679.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., , and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., , and T. D. Prowse, 1992: Snow and floating ice. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 7.1–7.58.

  • Hakuba, M. Z., , D. Folini, , A. Sanchez-Lorenzo, , and M. Wild, 2013: Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res. Atmos., 118, 85858597, doi:10.1002/jgrd.50673.

    • Search Google Scholar
    • Export Citation
  • Helbig, N., , H. Löwe, , and M. Lehning, 2009: Radiosity approach for the shortwave surface radiation balance in complex terrain. J. Atmos. Sci., 66, 29002912, doi:10.1175/2009JAS2940.1.

    • Search Google Scholar
    • Export Citation
  • Hess, M., , P. Koepke, , and I. Schult, 1998: Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., , P. W. Stackhouse Jr., , B. A. Wielicki, , T. P. Zhang, , and S. R. Wilson, 2009: Surface insolation trends from satellite and ground measurements: Comparisons and challenges. J. Geophys. Res., 114, D00D20, doi:10.1029/2008JD011004.

    • Search Google Scholar
    • Export Citation
  • Joseph, J., , W. Wiscombe, , and J. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, M. D., , Y. J. Kaufman, , W. P. Menzel, , and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 227, doi:10.1109/36.124212.

    • Search Google Scholar
    • Export Citation
  • King, M. D., , S. E. Platnick, , W. P. Menzel, , S. A. Ackerman, , and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, doi:10.1109/TGRS.2012.2227333.

    • Search Google Scholar
    • Export Citation
  • Kneizys, F. X., , E. P. Shettle, , W. O. Gallery, , J. H. Chetwynd Jr., , L. W. Abreu, , J. E. A. Selby, , R. W. Fenn, , and R. A. McClatchey, 1980: Atmospheric transmittance/radiance: Computer code LOWTRAN 5. Air Force Geophysical Laboratory Tech. Rep. AFGL-TR-80-0067, 233 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a088215.pdf.]

  • Lacis, A. A., , and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, doi:10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lai, Y.-J., , M.-D. Chou, , and P.-H. Lin, 2010: Parameterization of topographic effect on surface solar radiation. J. Geophys. Res., 115, D01104, doi:10.1029/2009JD012305.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-L., , K. N. Liou, , and A. Hall, 2011: Parameterization of solar fluxes over mountain surfaces for application to climate models. J. Geophys. Res., 116, D01101, doi:10.1029/2010JD014722.

    • Search Google Scholar
    • Export Citation
  • Li, X., , R. T. Pinker, , M. M. Wonsick, , and Y. Ma, 2007: Toward improved satellite estimates of short-wave radiative fluxes—Focus on cloud detection over snow: 1. Methodology. J. Geophys. Res., 112, D07208, doi:10.1029/2005JD006698.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , W. Y. Su, , T. M. Wong, , F. G. Rose, , D. R. Doelling, , and X. L. Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359385, doi:10.1007/s10712-012-9175-1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., , and T. P. Ackerman, 1995: Surface measurements of solar irradiance: A study of the spatial correlation between simultaneous measurements at separated sites. J. Appl. Meteor., 34, 10391046, doi:10.1175/1520¬0450(1995)0342.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , and R. T. Pinker, 2012: Shortwave radiative fluxes from satellites: An update. J. Geophys. Res., 117, D23202, doi:10.1029/2012JD018332.

    • Search Google Scholar
    • Export Citation
  • Male, D. H., , and R. J. Granger, 1981: Snow surface energy exchange. Water Resour. Res., 17, 609627, doi:10.1029/WR017i003p00609.

  • Marks, D., , and J. Dozier, 1992: Climate and energy exchange at the snow surface in the Alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, doi:10.1029/92WR01483.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., , M. D. King, , C. B. Schaaf, , D. K. Hall, , and S. Platnick, 2007: Northern Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ., 111, 337345, doi:10.1016/j.rse.2007.03.026.

    • Search Google Scholar
    • Export Citation
  • Müller, M. D., , and D. Scherer, 2005: A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Wea. Rev., 133, 14311442, doi:10.1175/MWR2927.1.

    • Search Google Scholar
    • Export Citation
  • Niu, X., , and R. T. Pinker, 2011: Radiative fluxes at Barrow, Alaska: A satellite view. J. Climate, 24, 54945505, doi:10.1175/JCLI-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Niu, X., , R. T. Pinker, , and M. F. Cronin, 2010: Radiative fluxes at high latitudes. Geophys. Res. Lett., 37, L20811, doi:10.1029/2010GL044606.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and et al. , 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., , H. M. Wang, , and S. A. Grodsky, 2009: How good are ocean buoy observations of radiative fluxes? Geophys. Res. Lett., 36, L10811, doi:10.1029/2009GL037840.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., , B. Toth, , R. J. Granger, , N. R. Hedstrom, , and R. L. H. Essery, 2003: Variation in surface energetics during snowmelt in a subarctic mountain catchment. J. Hydrometeor., 4, 702719, doi:10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., , and S. M. Freidenreich, 1992: A study of broadband parameterizations of the solar radiative interactions with water vapor and water drops. J. Geophys. Res., 97, 11 48711 512, doi:10.1029/92JD00932.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and et al. , 2013: Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys., 13, 23472379, doi:10.5194/acp-13-2347-2013.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, W., , and J. Dozier, 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32, 115130, doi:10.1029/95WR02718.

    • Search Google Scholar
    • Export Citation
  • Su, H., and et al. , 2008: Spatial and temporal scaling behavior of surface shortwave downward radiation based on MODIS and in situ measurements. IEEE Geosci. Remote Sens. Lett., 5, 542546, doi:10.1109/LGRS.2008.923209.

    • Search Google Scholar
    • Export Citation
  • Vignola, F., , P. Harlan, , R. Perez, , and M. Kmiecik, 2007: Analysis of satellite derived beam and global solar radiation data. Sol. Energy, 81, 768772, doi:10.1016/j.solener.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and R. T. Pinker, 2009: Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res., 114, D20201, doi:10.1029/2008JD010442.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299, 17251728, doi:10.1126/science.1078065.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 13
PDF Downloads 24 24 9

Shortwave Radiative Fluxes on Slopes

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 2 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Snow-covered mountain ranges are a major source of water supply for runoff and groundwater recharge. Snowmelt supplies as much as 75% of the surface water in basins of the western United States. Net radiative fluxes make up about 80% of the energy balance over snow-covered surfaces. Because of the large extent of snow cover and the scarcity of ground observations, use of remotely sensed data is an attractive option for estimating radiative fluxes. Most of the available methods have been applied to low-spatial-resolution satellite observations that do not capture the spatial variability of snow cover, clouds, or aerosols, all of which need to be accounted for to achieve accurate estimates of surface radiative fluxes. The objective of this study is to use high-spatial-resolution observations that are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive surface shortwave (0.2–4.0 μm) downward radiative fluxes in complex terrain, with attention on the effect of topography (e.g., shadowing or limited sky view) on the amount of radiation received. The developed method has been applied to several typical melt seasons (January–July during 2003, 2004, 2005, and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability of shortwave fluxes. Issues of scale in both the satellite and ground observations are also addressed to illuminate difficulties in the validation process of satellite-derived quantities. It is planned to apply the findings from this study to test improvements in estimation of snow water equivalent.

Corresponding author address: R. T. Pinker, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, Computer and Space Sciences Bldg., College Park, MD 20742. E-mail: pinker@atmos.umd.edu

Abstract

Snow-covered mountain ranges are a major source of water supply for runoff and groundwater recharge. Snowmelt supplies as much as 75% of the surface water in basins of the western United States. Net radiative fluxes make up about 80% of the energy balance over snow-covered surfaces. Because of the large extent of snow cover and the scarcity of ground observations, use of remotely sensed data is an attractive option for estimating radiative fluxes. Most of the available methods have been applied to low-spatial-resolution satellite observations that do not capture the spatial variability of snow cover, clouds, or aerosols, all of which need to be accounted for to achieve accurate estimates of surface radiative fluxes. The objective of this study is to use high-spatial-resolution observations that are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive surface shortwave (0.2–4.0 μm) downward radiative fluxes in complex terrain, with attention on the effect of topography (e.g., shadowing or limited sky view) on the amount of radiation received. The developed method has been applied to several typical melt seasons (January–July during 2003, 2004, 2005, and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability of shortwave fluxes. Issues of scale in both the satellite and ground observations are also addressed to illuminate difficulties in the validation process of satellite-derived quantities. It is planned to apply the findings from this study to test improvements in estimation of snow water equivalent.

Corresponding author address: R. T. Pinker, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, Computer and Space Sciences Bldg., College Park, MD 20742. E-mail: pinker@atmos.umd.edu
Save