• An, Z. S., and et al. , 2015: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci., 43, 2977, doi:10.1146/annurev-earth-060313-054623.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Y. Zhang, , and T. Li, 2000a: Interannual and interdecadal variation of the East Asian summer monsoon rainfall and tropical SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Y. Zhang, , and T. Li, 2000b: Interannual and interdecadal variation of the East Asian summer monsoon rainfall and tropical SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 43264340, doi:10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F. H., and et al. , 2015: East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep., 5, 11186, doi:10.1038/srep11186.

    • Search Google Scholar
    • Export Citation
  • Chen, L. J., , Y. Yuan, , M. Z. Yang, , J. Q. Zuo, , and W. J. Li, 2013: A review of physical mechanisms of the global SSTA impact on EASM. J. Appl. Meteor. Sci., 5, 521532.

    • Search Google Scholar
    • Export Citation
  • Chen, W., 1982: Fluctuations in Northern Hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808823, doi:10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S.-P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., , and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , J. Li, , and Y. Li, 2010: A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia. J. Climate, 23, 13341353, doi:10.1175/2009JCLI2837.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , J. Li, , Y. Li, , J. L. Zhu, , and F. Xie, 2015: Relationships among the monsoon-like southwest Australian circulation, the southern annular mode, and winter rainfall over southwest Western Australia. Adv. Atmos. Sci., 32, 10631076, doi:10.1007/s00376-014-4142-z.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and P. J. Webster, 1988: Alternative theories of atmospheric teleconnections and low-frequency fluctuations. Rev. Geophys., 26, 459494, doi:10.1029/RG026i003p00459.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., , and X. L. Teng, 1988: Relationship between summer climate in China and El Niño/Southern Oscillation phenomenon (in Chinese). Chin. J. Atmos. Sci., 12, 133141.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., , and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., , J. Yang, , S. J. Kim, , Y. Q. Gao, , D. Guo, , T. J. Zhou, , and M. Hu, 2011: Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 21992216, doi:10.1007/s00382-011-1041-1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and Q. Zeng, 2000: Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon. Sci. China, 43D, 646653.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and Q. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, doi:10.1029/2001GL013874.

  • Li, J., , and J. X. L. Wang, 2003a: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 343348, doi:10.1007/BF02690792.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and J. X. L. Wang, 2003b: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, doi:10.1007/BF02690792.

    • Search Google Scholar
    • Export Citation
  • Li, J., and et al. , 2013: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, S., , and L. Ji, 2001: Background circulation characteristics of the persistence anomalies of the summertime circulation over the Ural Mountains (in Chinese). Acta Meteor. Sin., 59, 280293.

    • Search Google Scholar
    • Export Citation
  • Li, Y. J., , J. Li, , F. F. Jin, , and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 32333256, doi:10.1175/JAS-D-14-0239.1.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Liu, Z., , and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , H. Johnson, , and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, doi:10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nan, S., , and J. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi:10.1029/2003GL018381.

    • Search Google Scholar
    • Export Citation
  • Nan, S., , J. Li, , X. Yuan, , and P. Zhao, 2009: Boreal spring Southern Hemisphere annular mode, Indian Ocean sea surface temperature, and East Asian summer monsoon. J. Geophys. Res., 114, D02103, doi:10.1029/2008JD010045.

    • Search Google Scholar
    • Export Citation
  • Pan, L., 2005: Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett., 32, L06707, doi:10.1029/2005GL022427.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128, 14131443, doi:10.1002/qj.200212858302.

    • Search Google Scholar
    • Export Citation
  • Shi, F., , S., J. Li, , and R. J. S. Wilson, 2014: A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci. Rep., 4, 6739, doi:10.1038/srep06739.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., , and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Van Loon, H., , and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296310, doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M, , E. P. Chassignet, , R. G. Curry, , T. L. Delworth, , R. R. Dickson, , and K. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–146, doi:10.1029/134GM06.

  • Wang, B., , and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Z. Wu, , J. Li, , J. Liu, , C.-P. Chang, , Y. Ding, , and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon? J. Climate, 21, 44494463, doi:10.1175/2008JCLI2183.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J. Liu, , H. J. Kim, , P. J. Webster, , S. Y. Yim, , and B. Q. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, doi:10.1073/pnas.1219405110.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386, doi:10.1007/BF02919316.

    • Search Google Scholar
    • Export Citation
  • Weng, H. Y., , K. M. Lau, , and Y. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77, 845857.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , and H. Lin, 2012: Interdecadal variability of the ENSO–North Atlantic Oscillation connection in boreal summer. Quart. J. Roy. Meteor. Soc., 138, 16681675, doi:10.1002/qj.1889.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , and L. Yu, 2015: Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Climate Dyn., 46, 30673078, doi:10.1007/s00382-015-2753-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , and P. Zhang, 2015: Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Climate Dyn., 45, 11171128, doi:10.1007/s00382-014-2361-8.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , B. Wang, , J. Li, , and F. F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , J. P. Li, , Z. Jiang, , J. He, , and X. Zhu, 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794800, doi:10.1002/joc.2309.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Xu, H., , J. Feng, , and C. Sun, 2013: Impact of preceding summer North Atlantic Oscillation on early autumn precipitation over central China. Atmos. Ocean. Sci. Lett., 6, 417422, doi:10.3878/j.issn.1674-2834.13.0027.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and K.-M. Lau, 2006: Interannual variability of the Asian monsoon. The Asian Monsoon, B. Wang, Ed., Springer, 259–293.

  • Zhang, Q. Y., , and S. Y. Tao, 1998: Influence of Asian mid-latitude circulation on East Asian summer rainfall (in Chinese). Acta Meteor. Sin., 56, 199211.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., , J. Li, , and Y. J. Li, 2015: Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J. Climate, 28, 74377456, doi:10.1175/JCLI-D-14-00425.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., , J. P. Li, , J. Feng, , Y. J. Li, , and Y. Li, 2015a: Relative importance of the austral summer and autumn SAM in modulating Southern Hemisphere extratropical autumn SST. J. Climate, 28, 80038020, doi:10.1175/JCLI-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., , J. P. Li, , L. Wang, , F. Xie, , and X. F. Li, 2015b: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 68596881, doi:10.1175/JCLI-D-14-00515.1.

    • Search Google Scholar
    • Export Citation
  • Zuo, J. Q., , W. J. Li, , H. L. Ren, , and L. J. Chen, 2012: Change of the relationship between the spring NAO and East Asian summer monsoon and its possible mechanism. Chin. J. Geophys., 55, 2334, doi:10.1002/cjg2.1697.

    • Search Google Scholar
    • Export Citation
  • Zuo, J. Q., , W. J. Li, , C. H. Sun, , L. Xu, , and H. L. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, doi:10.1007/s00376-012-2125-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 23
PDF Downloads 83 83 22

Influence of the Summer NAO on the Spring-NAO-Based Predictability of the East Asian Summer Monsoon

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 5 Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The dominant mode of atmospheric circulation over the North Atlantic region is the North Atlantic Oscillation (NAO). The boreal spring NAO may imprint its signal on contemporaneous sea surface temperature (SST), leading to a North Atlantic SST tripolar pattern (NAST). This pattern persists into the following summer and modulates the East Asian summer monsoon (EASM). Previous studies have shown that the summer NAST is caused mainly by the preceding spring NAO, whereas the contemporaneous summer NAO plays a secondary role. The results of this study illustrate that, even if the summer NAO plays a secondary role, it may also perturb summer SST anomalies caused by the spring NAO. There are two types of perturbation caused by the summer NAO. If the spring and summer NAO patterns have the same (opposite) polarities, the summer NAST tends to be enhanced (reduced) by the summer NAO, and the correlation between the spring NAO and EASM is usually stronger (weaker). In the former (latter) case, the spring-NAO-based prediction of the EASM tends to have better (limited) skill. These results indicate that it is important to consider the evolution of the NAO when forecasting the EASM, particular when there is a clear reversal in the polarity of the NAO, because it may impair the spring-NAO-based EASM prediction.

Corresponding author address: Dr. Fei Zheng, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: zhengfei08@mail.iap.ac.cn

Abstract

The dominant mode of atmospheric circulation over the North Atlantic region is the North Atlantic Oscillation (NAO). The boreal spring NAO may imprint its signal on contemporaneous sea surface temperature (SST), leading to a North Atlantic SST tripolar pattern (NAST). This pattern persists into the following summer and modulates the East Asian summer monsoon (EASM). Previous studies have shown that the summer NAST is caused mainly by the preceding spring NAO, whereas the contemporaneous summer NAO plays a secondary role. The results of this study illustrate that, even if the summer NAO plays a secondary role, it may also perturb summer SST anomalies caused by the spring NAO. There are two types of perturbation caused by the summer NAO. If the spring and summer NAO patterns have the same (opposite) polarities, the summer NAST tends to be enhanced (reduced) by the summer NAO, and the correlation between the spring NAO and EASM is usually stronger (weaker). In the former (latter) case, the spring-NAO-based prediction of the EASM tends to have better (limited) skill. These results indicate that it is important to consider the evolution of the NAO when forecasting the EASM, particular when there is a clear reversal in the polarity of the NAO, because it may impair the spring-NAO-based EASM prediction.

Corresponding author address: Dr. Fei Zheng, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: zhengfei08@mail.iap.ac.cn
Save