• Anagnostou, M., , E. Anagnostou, , and J. Vivekanandan, 2006: Correction for rain path specific and differential attenuation of X-band dual-polarization observations. IEEE Trans. Geosci. Remote Sens., 44, 24702480, doi:10.1109/TGRS.2006.873204.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Berkowitz, D. S., , J. A. Schultz, , S. Vasiloff, , K. L. Elmore, , C. D. Payne, , and J. B. Boettcher, 2013: Status of dual pol QPE in the WSR-88D network. 27th Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Manuscript/Paper221525/AMS27thHydro_2.2Berkowitz_et_al.pdf.]

  • Blackman, T. M., , and A. J. Illingworth, 1997: Examining the lower limit of KDP rainrate estimation including a case study at S-band. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 117118.

  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., , V. Chandrasekar, , N. Balakrishnan, , and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , G.-J. Huang, , V. Chandrasekar, , and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645, doi:10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., , G. Zhang, , and M. Xue, 2013: A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteor. Climatol., 52, 169185, doi:10.1175/JAMC-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., , J. Vivekanandan, , and T.-C. C. Wang, 2014: Estimation of X-band polarimetric radar attenuation and measurement uncertainty using a variational method. J. Appl. Meteor. Climatol., 53, 10991119, doi:10.1175/JAMC-D-13-0191.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , W. A. Petersen, , L. D. Carey, , S. A. Rutledge, , and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , V. Chandrasekar, , S. Lim, , P. C. Kennedy, , Y. Wang, , and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., , D. S. Berkowitz, , R. Murnan, , J. A. Schultz, , S. Castleberry, , K. Howard, , K. L. Elmore, , and S. Vasiloff, 2012: Initial assessment of the dual-polarization quantitative precipitation estimate algorithm’s performance for two dual-polarization WSR-88Ds. 28th Conf. on Interactive Information Processing Systems (IIPS), New Orleans, LA, Amer. Meteor. Soc., 7B.2. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper203568/Initial%20Analysis%20of%20DP%20QPE%20Performance%20Final%2017%20Jan%202012.pdf.]

  • Desroziers, G., , L. Berre, , B. Chapnik, , and P. Poli, 2005: Diagnosis of observation, background and analysis error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Figueras i Ventura, J., , F. Kabeche, , B. Fradon, , R. Hogan, , A. A. Boumahmoud, , A. Illingworth, , and P. Tabary, 2010: Extensive evaluation of polarimetric quantitative precipitation estimations (QPE) in ideal and less ideal conditions. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD, 6 pp. [Available from the corresponding author.]

  • Furness, G., 2005: Using optimal estimation theory for improved rainfall rates from polarization radar. Masters dissertation, Dept. of Mathematics, University of Reading, 66 pp.

  • Giangrande, S. E., , and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , R. McGraw, , and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, doi:10.1175/JTECH-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Goodall, C., , H. Austin, , R. Frederick, , D. A. Glenn, , and L. E. Pagano, 2012: Experiences with dual polarization radar in operations at Newport/Morehead City NC. 28th Conf. on Interactive Information Processing Systems (IIPS), New Orleans, LA, Amer. Meteor. Soc., 5B.2. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper200269/DualPol_MHX_AMS.pdf.]

  • Gorgucci, E., , and V. Chandrasekar, 2005: Evaluation of attenuation correction methodology for dual-polarization radars: Application to X-band systems. J. Atmos. Oceanic Technol., 22, 11951206, doi:10.1175/JTECH1763.1.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , V. Chandrasekar, , and G. Scarchilli, 1995: Radar and surface measurement of rainfall during CaPE: 26 July 1991 case study. J. Appl. Meteor., 34, 15701577, doi:10.1175/1520-0450-34.7.1570.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , G. Scarchilli, , and V. Chandrasekar, 1999: Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Oceanic Technol., 16, 16901697, doi:10.1175/1520-0426(1999)016<1690:SDPEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , G. Scarchilli, , V. Chandrasekar, , and V. N. Bringi, 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms immune to variability in raindrop shape–size relation. J. Atmos. Oceanic Technol., 18, 17731786, doi:10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , V. Chandrasekar, , and L. Baldini, 2006: Correction of X-band radar observation for propagation effects based on the self-consistency principle. J. Atmos. Oceanic Technol., 23, 16681681, doi:10.1175/JTECH1950.1.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , R. Bechini, , L. Baldini, , R. Cremonini, , and V. Chandrasekar, 2013: The influence of antenna radome on weather radar calibration and its real-time assessment. J. Atmos. Oceanic Technol., 30, 676689, doi:10.1175/JTECH-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2014: Performance of operational model precipitation forecast guidance during the 2013 Colorado Front-Range floods. Mon. Wea. Rev., 142, 26092618, doi:10.1175/MWR-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46, 15441564, doi:10.1175/JAM2550.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., , and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copular differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., , V. Chandrasekar, , V. N. Bringi, , and P. Meischner, 1993: Processing and interpretation of coherent dual-polarized radar measurements. J. Atmos. Oceanic Technol., 10, 155164, doi:10.1175/1520-0426(1993)010<0155:PAIOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., , S. M. Ellis, , M. Dixon, , and G. Meymaris, 2010a: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 15831598, doi:10.1175/2010JTECHA1336.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., , S. M. Ellis, , M. Dixon, , and G. Meymaris, 2010b: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part II: Experimental data. J. Atmos. Oceanic Technol., 27, 15991607, doi:10.1175/2010JTECHA1337.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., , and R. J. Thompson, 2005: The estimation of moderate rain rates with operational polarisation radar. Proc. 32th Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P9R.1. [Available online at https://ams.confex.com/ams/pdfpapers/96204.pdf.]

  • Istok, M. J., and et al. , 2009: WSR-88D dual polarization initial operational capabilities. 25th Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/pdfpapers/148927.pdf.]

  • Lee, G. W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 10051028, doi:10.1175/JTECH1899.1.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1977: A field experiment on the calibration of radars with raindrop disdrometers. J. Appl. Meteor., 16, 451454, doi:10.1175/1520-0450(1977)016<0451:AFEOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., 2004: Simultaneous transmission mode for the polarimetric WSR-88D. NOAA/NSSL Rep., 84 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/SHV_statistics.pdf.]

  • Pepler, A. S., , and P. T. May, 2012: A robust error-based rain estimation method for polarimetric radar. Part II: Case study. J. Appl. Meteor. Climatol., 51, 17021713, doi:10.1175/JAMC-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., , P. T. May, , and M. Thurai, 2011: A robust error-based rain estimation method for polarimetric radar. Part I: Development of a method. J. Appl. Meteor. Climatol., 50, 20922103, doi:10.1175/JAMC-D-10-05029.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Soundings: Theory and Practice. World Scientific, 238 pp.

  • Ruzanski, E., , and V. Chandrasekar, 2012: Nowcasting rainfall fields derived from specific differential phase. J. Appl. Meteor. Climatol., 51, 19501959, doi:10.1175/JAMC-D-11-081.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and D. S. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, doi:10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090, doi:10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , S. E. Giangrande, , and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , T. J. Schuur, , D. W. Burgess, , P. L. Heinselman, , S. E. Giangrande, , and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , V. N. Bringi, , and H. H. Al-Khatib, 1981: A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteor., 20, 13621368, doi:10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smyth, T. J., , and A. J. Illingworth, 1998: Correction for attenuation of radar reflectivity using polarization data. Quart. J. Roy. Meteor. Soc., 124, 23932415, doi:10.1002/qj.49712455111.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39, 19231940, doi:10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , J. A. Smith, , and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131, doi:10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , W. M. Adams, , and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , S. M. Ellis, , R. Oye, , D. S. Zrnić, , A. V. Ryzhkov, , and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , J. Vivekanandan, , and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar. IEEE Trans. Geosci. Remote Sens., 39, 830840, doi:10.1109/36.917906.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 9
PDF Downloads 29 29 6

Quantitative Precipitation Estimation of the Epic 2013 Colorado Flood Event: Polarization Radar-Based Variational Scheme

View More View Less
  • 1 Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Institute of Atmospheric Physics, National Central University, Chung-Li, Taiwan
© Get Permissions
Restricted access

Abstract

The accuracy of rain-rate estimation using polarimetric radar measurements has been improved as a result of better characterization of radar measurement quality and rain microphysics. In the literature, a variety of power-law relations between polarimetric radar measurements and rain rate are described because of the dynamic or varying nature of rain microphysics. A variational technique that concurrently takes into account radar observational error and dynamically varying rain microphysics is proposed in this study. Rain-rate estimation using the variational algorithm that uses event-based observational error and background rain climatological values is evaluated using observing system simulation experiments (OSSE), and its performance is demonstrated in the case of an epic Colorado flood event. The rain event occurred between 11 and 12 September 2013. The results from OSSE show that the variational algorithm with event-based observational error consistently estimates more accurate rain rate than does the “R(ZHH, ZDR)” power-law algorithm. On the contrary, the usage of ad hoc or improper observational error degrades the performance of the variational method. Furthermore, the variational algorithm is less sensitive to the observational error of differential reflectivity ZDR than is the R(ZHH, ZDR) algorithm. The variational quantitative precipitation estimation (QPE) retrieved more accurate rainfall estimation than did the power-law dual-polarization QPE in this particular event, despite the fact that both algorithms used the same dual-polarization radar measurements from the Next Generation Weather Radar (NEXRAD).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Wei-Yu Chang, Dept. of Atmospheric Sciences, Chinese Culture University, Da-Yi Bldg. 6F, 55 Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan. E-mail: zwy10@ulive.pccu.edu.tw

Abstract

The accuracy of rain-rate estimation using polarimetric radar measurements has been improved as a result of better characterization of radar measurement quality and rain microphysics. In the literature, a variety of power-law relations between polarimetric radar measurements and rain rate are described because of the dynamic or varying nature of rain microphysics. A variational technique that concurrently takes into account radar observational error and dynamically varying rain microphysics is proposed in this study. Rain-rate estimation using the variational algorithm that uses event-based observational error and background rain climatological values is evaluated using observing system simulation experiments (OSSE), and its performance is demonstrated in the case of an epic Colorado flood event. The rain event occurred between 11 and 12 September 2013. The results from OSSE show that the variational algorithm with event-based observational error consistently estimates more accurate rain rate than does the “R(ZHH, ZDR)” power-law algorithm. On the contrary, the usage of ad hoc or improper observational error degrades the performance of the variational method. Furthermore, the variational algorithm is less sensitive to the observational error of differential reflectivity ZDR than is the R(ZHH, ZDR) algorithm. The variational quantitative precipitation estimation (QPE) retrieved more accurate rainfall estimation than did the power-law dual-polarization QPE in this particular event, despite the fact that both algorithms used the same dual-polarization radar measurements from the Next Generation Weather Radar (NEXRAD).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Wei-Yu Chang, Dept. of Atmospheric Sciences, Chinese Culture University, Da-Yi Bldg. 6F, 55 Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan. E-mail: zwy10@ulive.pccu.edu.tw
Save