• Amanatidis, G., , K. Papadopoulos, , J. Bartzis, , and C. Helmis, 1992: Evidence of katabatic flows deduced from a 84 m meteorological tower in Athens, Greece. Bound.-Layer Meteor., 58, 117132, doi:10.1007/BF00120754.

    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2016: Mistral. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/mistral.]

  • Atkinson, B., 1995: Orographic and stability effects on valley-side drainage flows. Bound.-Layer Meteor., 75, 403428, doi:10.1007/BF00712271.

    • Search Google Scholar
    • Export Citation
  • Barr, S., , and M. M. Orgill, 1989: Influence of external meteorology on nocturnal valley drainage winds. J. Appl. Meteor., 28, 497517, doi:10.1175/1520-0450(1989)028<0497:IOEMON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2013: Mountain Weather and Climate. 3rd ed. Cambridge University Press, 506 pp.

  • Carrera, M. L., , J. R. Gyakum, , and C. A. Lin, 2009: Observational study of wind channeling within the St. Lawrence River Valley. J. Appl. Meteor. Climatol., 48, 23412361, doi:10.1175/2009JAMC2061.1.

    • Search Google Scholar
    • Export Citation
  • Doran, J., , J. D. Fast, , and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duine, G.-J., 2015: Characterization of down-valley winds in stable stratification from the KASCADE field campaign and WRF mesoscale simulations. Ph.D. thesis, Université Toulouse III Paul Sabatier, 275 pp. [Available online at https://tel.archives-ouvertes.fr/tel-01263986/document.]

  • Fernando, H. J. S., , B. Verhoef, , S. Di Sabatino, , L. S. Leo, , and S. Park, 2013: The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Bound.-Layer Meteor., 147, 443468, doi:10.1007/s10546-012-9795-5.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and et al. , 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 19451967, doi:10.1175/BAMS-D-13-00131.1.

    • Search Google Scholar
    • Export Citation
  • Giovannini, L., , L. Laiti, , D. Zardi, , and M. de Franceschi, 2015: Climatological characteristics of the Ora del Garda wind in the Alps. Int. J. Climatol., 35, 41034115, doi:10.1002/joc.4270.

    • Search Google Scholar
    • Export Citation
  • Gudiksen, P. H., 1989: Categorization of nocturnal drainage flows within the Brush Creek Valley and the variability of sigma theta in complex terrain. J. Appl. Meteor., 28, 489495, doi:10.1175/1520-0450(1989)028<0489:CONDFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., , and C. D. Whiteman, 2005: Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteor., 44, 113126, doi:10.1175/JAM-2182.1.

    • Search Google Scholar
    • Export Citation
  • Horst, T., , and J. Doran, 1986: Nocturnal drainage flow on simple slopes. Bound.-Layer Meteor., 34, 263286, doi:10.1007/BF00122382.

  • Jiménez, M. A., , and J. Cuxart, 2014: A study of the nocturnal flows generated in the north side of the Pyrenees. Atmos. Res., 145, 244254, doi:10.1016/j.atmosres.2014.04.010.

    • Search Google Scholar
    • Export Citation
  • Kalverla, P., , G.-J. Duine, , G.-J. Steeneveld, , and T. Hedde, 2016: Evaluation of the Weather Research and Forecasting Model for contrasting diurnal cycles in the Durance Valley complex terrain during the KASCADE field campaign. J. Appl. Meteor. Climatol., 55, 861882, doi:10.1175/JAMC-D-15-0258.1.

    • Search Google Scholar
    • Export Citation
  • Lapworth, A., 2006: The morning transition of the nocturnal boundary layer. Bound.-Layer Meteor., 119, 501526, doi:10.1007/s10546-005-9046-0.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and et al. , 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, doi:10.5194/acp-14-10931-2014.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , R. Nakamura, , M. Soler, , J. Sun, , S. Burns, , and D. Lenschow, 2001: Shallow drainage flows. Bound.-Layer Meteor., 101, 243260, doi:10.1023/A:1019273314378.

    • Search Google Scholar
    • Export Citation
  • Manins, P., , and B. Sawford, 1979: A model of katabatic winds. J. Atmos. Sci., 36, 619630, doi:10.1175/1520-0469(1979)036<0619:AMOKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., , and A. Zadra, 2015: Representing Richardson number hysteresis in the NWP boundary layer. Mon. Wea. Rev., 143, 12321258, doi:10.1175/MWR-D-14-00179.1.

    • Search Google Scholar
    • Export Citation
  • Price, J., and et al. , 2011: COLPEX: Field and numerical studies over a region of small hills. Bull. Amer. Meteor. Soc., 92, 16361650, doi:10.1175/2011BAMS3032.1.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P., , S. Vosper, , and A. Brown, 2014: Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quart. J. Roy. Meteor. Soc., 140, 715728, doi:10.1002/qj.2159.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. Q., , C. D. Whiteman, , W. J. Steenburgh, , and X. Bian, 2002: A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull. Amer. Meteor. Soc., 83, 699708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Weber, R. O., , and P. Kaufmann, 1998: Relationship of synoptic winds and complex terrain flows during the MISTRAL field experiment. J. Appl. Meteor., 37, 14861496, doi:10.1175/1520-0450(1998)037<1486:ROSWAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, doi:10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and et al. , 2008: METCRAX 2006: Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 16651680, doi:10.1175/2008BAMS2574.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd. ed. Academic Press, 676 pp.

  • Zardi, D., , and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer, 35–119.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 5
PDF Downloads 23 23 5

A Simple Method Based on Routine Observations to Nowcast Down-Valley Flows in Shallow, Narrow Valleys

View More View Less
  • 1 Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, and Laboratoire de Modélisation des Transferts dans l’Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France
  • | 2 Laboratoire de Modélisation des Transferts dans l’Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France
  • | 3 Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France
© Get Permissions
Restricted access

Abstract

A simple relation to diagnose the existence of a thermally driven down-valley wind in a shallow (100 m deep) and narrow (1–2 km wide) valley based on routine weather measurements has been determined. The relation is based on a method that has been derived from a forecast verification principle. It consists of optimizing a threshold of permanently measured quantities to nowcast the thermally driven Cadarache (southeastern France) down-valley wind. Three parameters permanently observed at a 110-m-high tower have been examined: the potential temperature difference between the heights of 110 and 2 m, the wind speed at 110 m, and a bulk Richardson number. The thresholds are optimized using the wind observations obtained within the valley during the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) field experiment, which was conducted in the winter of 2013. The highest predictability of the down-valley wind at the height of 10 m (correct nowcasting ratio of 0.90) was found for the potential temperature difference at a threshold value of 2.6 K. The applicability of the method to other heights of the down-valley wind (2 and 30 m) and to summer conditions is also demonstrated. This allowed a reconstruction of the climatology of the thermally driven down-valley wind that demonstrates that the wind exists throughout the year and is strongly linked to nighttime duration. This threshold technique will make it possible to forecast the subgrid-scale down-valley wind from operational numerical weather coarse-grid simulations by means of statistical downscaling.

Current affiliation: Department of Environmental Science, University of Virginia, Charlottesville, Virginia.

Corresponding author address: Gert-Jan Duine, Laboratoire d’Aérologie, Université de Toulouse, 14 Av. Edouard Belin, Toulouse, France. E-mail: gertjan.duine@gmail.com; gd6s@virginia.edu

Abstract

A simple relation to diagnose the existence of a thermally driven down-valley wind in a shallow (100 m deep) and narrow (1–2 km wide) valley based on routine weather measurements has been determined. The relation is based on a method that has been derived from a forecast verification principle. It consists of optimizing a threshold of permanently measured quantities to nowcast the thermally driven Cadarache (southeastern France) down-valley wind. Three parameters permanently observed at a 110-m-high tower have been examined: the potential temperature difference between the heights of 110 and 2 m, the wind speed at 110 m, and a bulk Richardson number. The thresholds are optimized using the wind observations obtained within the valley during the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) field experiment, which was conducted in the winter of 2013. The highest predictability of the down-valley wind at the height of 10 m (correct nowcasting ratio of 0.90) was found for the potential temperature difference at a threshold value of 2.6 K. The applicability of the method to other heights of the down-valley wind (2 and 30 m) and to summer conditions is also demonstrated. This allowed a reconstruction of the climatology of the thermally driven down-valley wind that demonstrates that the wind exists throughout the year and is strongly linked to nighttime duration. This threshold technique will make it possible to forecast the subgrid-scale down-valley wind from operational numerical weather coarse-grid simulations by means of statistical downscaling.

Current affiliation: Department of Environmental Science, University of Virginia, Charlottesville, Virginia.

Corresponding author address: Gert-Jan Duine, Laboratoire d’Aérologie, Université de Toulouse, 14 Av. Edouard Belin, Toulouse, France. E-mail: gertjan.duine@gmail.com; gd6s@virginia.edu
Save