• Benali, A., , A. C. Carvalho, , J. P. Nunes, , N. Carvalhais, , and A. Santos, 2012: Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ., 124, 108121, doi:10.1016/j.rse.2012.04.024.

    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., , M. Z. Al-Hamdan, , S. N. J. Hemmings, , and G. M. Wade, 2012: A daily merged MODIS Aqua–Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ., 119, 315324, doi:10.1016/j.rse.2011.12.019.

    • Search Google Scholar
    • Export Citation
  • Czajkowski, K. P., , T. Mulhern, , S. N. Goward, , J. Cihlar, , R. O. Dubayah, , and S. D. Prince, 1997: Biospheric environmental monitoring at BOREAS with AVHRR observations. J. Geophys. Res., 102, 29 65129 662, doi:10.1029/97JD01327.

    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , M. Halbleib, , J. I. Smith, , W. P. Gibson, , M. K. Doggett, , G. H. Taylor, , J. Curtis, , and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , D. R. Conklin, , and M. H. Unsworth, 2010: Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Climatol., 30, 18571864, doi:10.1002/joc.2007.

    • Search Google Scholar
    • Export Citation
  • Dobrowski, S. Z., , J. T. Abatzoglou, , J. A. Greenberg, , and S. Schladow, 2009: How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agric. For. Meteor., 149, 17511758, doi:10.1016/j.agrformet.2009.06.006.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , M. J. Menne, , B. E. Gleason, , T. G. Houston, , and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Florio, E. N., , S. R. Lele, , Y. Chi Chang, , R. Sterner, , and G. E. Glass, 2004: Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach. Int. J. Remote Sens., 25, 29792994, doi:10.1080/01431160310001624593.

    • Search Google Scholar
    • Export Citation
  • Fu, G., , Z. Shen, , X. Zhang, , P. Shi, , Y. Zhang, , and J. Wu, 2011: Estimating air temperature of an alpine meadow on the northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol. Sin., 31, 813, doi:10.1016/j.chnaes.2010.11.002.

    • Search Google Scholar
    • Export Citation
  • Gallo, K., , R. Hale, , D. Tarpley, , and Y. Yu, 2011: Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. J. Appl. Meteor. Climatol., 50, 767775, doi:10.1175/2010JAMC2460.1.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., , R. H. Waring, , D. G. Dye, , and J. Yang, 1994: Ecological remote sensing at OTTER: Satellite macroscale observations. Ecol. Appl., 4, 322343, doi:10.2307/1941937.

    • Search Google Scholar
    • Export Citation
  • Grömping, U., 2006: Relative importance for linear regression in R: The package relaimpo. J. Stat. Software, 17, doi:10.18637/jss.v017.i01.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., , V. V. Salomonson, , and G. A. Riggs, 2006: MODIS/Terra snow cover 8-day l3 global 500m grid, version 5. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 January 2015, doi:10.5067/C574UGKQQU1T.

  • Hengl, T., , G. B. M. Heuvelink, , M. Perčec Tadić, , and E. J. Pebesma, 2012: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol., 107, 265277, doi:10.1007/s00704-011-0464-2.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., , S. E. Cameron, , J. L. Parra, , P. G. Jones, , and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Holden, Z. A., , J. T. Abatzoglou, , C. H. Luce, , and L. S. Baggett, 2011: Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agric. For. Meteor., 151, 10661073, doi:10.1016/j.agrformet.2011.03.011.

    • Search Google Scholar
    • Export Citation
  • Huete, A., , K. Didan, , T. Miura, , E. P. Rodriguez, , X. Gao, , and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, doi:10.1016/S0034-4257(02)00096-2.

    • Search Google Scholar
    • Export Citation
  • Jang, J.-D., , A. A. Viau, , and F. Anctil, 2004: Neural network estimation of air temperatures from AVHRR data. Int. J. Remote Sens., 25, 45414554, doi:10.1080/01431160310001657533.

    • Search Google Scholar
    • Export Citation
  • Jin, M., , and R. E. Dickinson, 2010: Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett., 5, 044004, doi:10.1088/1748-9326/5/4/044004.

    • Search Google Scholar
    • Export Citation
  • Jin, M., , R. E. Dickinson, , and A. M. Vogelmann, 1997: A comparison of CCM2–BATS skin temperature and surface-air temperature with satellite and surface observations. J. Climate, 10, 15051524, doi:10.1175/1520-0442(1997)010<1505:ACOCBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, S., , L. Yang, , P. Danielson, , C. Homer, , J. Fry, , and G. Xian, 2013: A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ., 132, 159175, doi:10.1016/j.rse.2013.01.012.

    • Search Google Scholar
    • Export Citation
  • Jones, P., , G. Jedlovec, , R. Suggs, , and S. Haines, 2004: Using MODIS LST to estimate minimum air temperatures at night. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P4.13. [Available online at https://ams.confex.com/ams/pdfpapers/79017.pdf.]

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , and W. J. Koss, 1984: Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983. Historical Climatology Series, Vol. 4, National Climatic Data Center, 38 pp.

  • Kawashima, S., , T. Ishida, , M. Minomura, , and T. Miwa, 2000: Relations between surface temperature and air temperature on a local scale during winter nights. J. Appl. Meteor., 39, 15701579, doi:10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kilibarda, M., , T. Hengl, , G. B. M. Heuvelink, , B. Gräler, , E. Pebesma, , M. Perčec Tadić, , and B. Bajat, 2014: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos., 119, 22942313, doi:10.1002/2013JD020803.

    • Search Google Scholar
    • Export Citation
  • Kim, S., 2012: ppcor: Partial and semi-partial (Part) correlation, version 1.0 R package. [Available online at http://cran.r-project.org/package=ppcor.]

  • Kloog, I., , A. Chudnovsky, , P. Koutrakis, , and J. Schwartz, 2012: Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA. Sci. Total Environ., 432, 8592, doi:10.1016/j.scitotenv.2012.05.095.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , and S. P. Serbin, 2008: Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ. Res. Lett., 3, 034003, doi:10.1088/1748-9326/3/3/034003.

    • Search Google Scholar
    • Export Citation
  • Lin, S., , N. J. Moore, , J. P. Messina, , M. H. DeVisser, , and J. Wu, 2012: Evaluation of estimating daily maximum and minimum air temperature with MODIS data in East Africa. Int. J. Appl. Earth Obs. Geoinf., 18, 128140, doi:10.1016/j.jag.2012.01.004.

    • Search Google Scholar
    • Export Citation
  • Lindeman, R., , P. Merenda, , and R. Gold, 1980: Introduction to Bivariate and Multivariate Analysis. Scott Foresman, 444 pp.

  • Livneh, B., , E. A. Rosenberg, , C. Lin, , B. Nijssen, , V. Mishra, , K. M. Andreadis, , E. P. Maurer, , and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., , N. Pepin, , and C. Rochford, 2008: Automated algorithm for mapping regions of cold-air pooling in complex terrain. J. Geophys. Res., 113, D22107, doi:10.1029/2008JD009879.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , A. W. Wood, , J. C. L. Adam, , and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., , and C. N. Williams, 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, doi:10.1175/2008JCLI2263.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., , I. Durre, , R. S. Vose, , B. E. Gleason, , and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Mildrexler, D. J., , M. Zhao, , and S. W. Running, 2011: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res., 116, G03025, doi:10.1029/2010JG001486.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., , P. W. Mote, , and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Mostovoy, G. V., , R. L. King, , K. R. Reddy, , V. G. Kakani, , and M. G. Filippova, 2006: Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GIsci. Remote Sens., 43, 78110, doi:10.2747/1548-1603.43.1.78.

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., , and S. W. Running, 1989: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteor., 28, 276284, doi:10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., , L. Pierce, , S. Running, , and S. Goward, 1993: Developing satellite-derived estimates of surface moisture status. J. Appl. Meteor., 32, 548557, doi:10.1175/1520-0450(1993)032<0548:DSDEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neteler, M., 2010: Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens., 2, 333351, doi:10.3390/rs1020333.

    • Search Google Scholar
    • Export Citation
  • Nichol, J., 2005: Remote sensing of urban heat islands by day and night. Photogramm. Eng. Remote Sensing, 71, 613621, doi:10.14358/PERS.71.5.613.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Boundary Layer Climates. Routledge, 464 pp.

  • Oyler, J. W., , A. Ballantyne, , K. Jencso, , M. Sweet, , and S. W. Running, 2015: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, doi:10.1002/joc.4127.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , and R. Avissar, 1990: Influence of landscape structure on local and regional climate. Landscape Ecol., 4, 133155, doi:10.1007/BF00132857.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and et al. , 2002: Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA. Int. J. Climatol., 22, 421434, doi:10.1002/joc.706.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and et al. , 2007: Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res., 112, D24S08, doi:10.1029/2006JD008229.

    • Search Google Scholar
    • Export Citation
  • Prihodko, L., , and S. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ., 60, 335346, doi:10.1016/S0034-4257(96)00216-7.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2014: R: A language and environment for statistical computing. Vienna, Austria. [Available online at http://www.R-project.org.]

  • Roth, M., , T. R. Oke, , and W. J. Emery, 1989: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens., 10, 16991720, doi:10.1080/01431168908904002.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sandholt, I., , K. Rasmussen, , and J. Andersen, 2002: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ., 79, 213224, doi:10.1016/S0034-4257(01)00274-7.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. C., , Z. Wan, , Y. Zhang, , and Y. Feng, 1998: Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens., 19, 27532774, doi:10.1080/014311698214497.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., , S. W. Running, , and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, doi:10.1016/S0022-1694(96)03128-9.

    • Search Google Scholar
    • Export Citation
  • Vancutsem, C., , P. Ceccato, , T. Dinku, , and S. J. Connor, 2010: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ., 114, 449465, doi:10.1016/j.rse.2009.10.002.

    • Search Google Scholar
    • Export Citation
  • Van De Kerchove, R., , S. Lhermitte, , S. Veraverbeke, , and R. Goossens, 2013: Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains. Int. J. Appl. Earth Obs. Geoinf., 20, 419, doi:10.1016/j.jag.2011.09.007.

    • Search Google Scholar
    • Export Citation
  • Vehrencamp, J. E., 1953: Experimental investigation of heat transfer at an air-Earth interface. Trans. Amer. Geophys. Union, 34, 22, doi:10.1029/TR034i001p00022.

    • Search Google Scholar
    • Export Citation
  • Vogt, J. V., , A. A. Viau, , and F. Paquet, 1997: Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int. J. Climatol., 17, 15591579, doi:10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5.

    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., , and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, doi:10.1016/S0034-4257(03)00079-8.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and et al. , 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, doi:10.1175/JAMC-D-13-0248.1.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ., 112, 5974, doi:10.1016/j.rse.2006.06.026.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., , and J. Dozier, 1996: A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34, 892905, doi:10.1109/36.508406.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, doi:10.1002/joc.3370150207.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , C. M. Rowe, , and W. D. Philpot, 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Cartogr. Geogr. Inf. Sci., 12, 516, doi:10.1559/152304085783914686.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , S. M. Robeson, , and J. J. Feddema, 1991: Influence of spatially variable instrument networks on climatic averages. Geophys. Res. Lett., 18, 22492251, doi:10.1029/91GL02844.

    • Search Google Scholar
    • Export Citation
  • Zakšek, K., , and M. Schroedter-Homscheidt, 2009: Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J. Photogramm. Remote Sens., 64, 414421, doi:10.1016/j.isprsjprs.2009.02.006.

    • Search Google Scholar
    • Export Citation
  • Zeng, L., , B. Wardlow, , T. Tadesse, , J. Shan, , M. Hayes, , D. Li, , and D. Xiang, 2015: Estimation of daily air temperature based on MODIS land surface temperature products over the Corn Belt in the US. Remote Sens., 7, 951970, doi:10.3390/rs70100951.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 33
PDF Downloads 115 115 20

Remotely Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States

View More View Less
  • 1 Division of Biological Sciences, and Montana Climate Office, Montana Forest and Conservation Experiment Station, University of Montana, Missoula, Montana
  • | 2 College of Forestry and Conservation, University of Montana, Missoula, Montana
  • | 3 U.S. Forest Service Region 1, and Department of Geography, University of Montana, Missoula, Montana
  • | 4 Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Science, University of Montana, Missoula, Montana
© Get Permissions
Restricted access

Abstract

Remotely sensed land skin temperature (LST) is increasingly being used to improve gridded interpolations of near-surface air temperature. The appeal of LST as a spatial predictor of air temperature rests in the fact that it is an observation available at spatial resolutions fine enough to capture topoclimatic and biophysical variations. However, it remains unclear if LST improves air temperature interpolations over what can already be obtained with simpler terrain-based predictor variables. Here, the relationship between LST and air temperature is evaluated across the conterminous United States (CONUS). It is found that there are significant differences in the ability of daytime and nighttime observations of LST to improve air temperature interpolations. Daytime LST mainly indicates finescale biophysical variation and is generally a poorer predictor of maximum air temperature than simple linear models based on elevation, longitude, and latitude. Moderate improvements to maximum air temperature interpolations are thus limited to specific mountainous areas in winter, to coastal areas, and to semiarid and arid regions where daytime LST likely captures variations in evaporative cooling and aridity. In contrast, nighttime LST represents important topoclimatic variation throughout the mountainous western CONUS and significantly improves nighttime minimum air temperature interpolations. In regions of more homogenous terrain, nighttime LST also captures biophysical patterns related to land cover. Both daytime and nighttime LST display large spatial and seasonal variability in their ability to improve air temperature interpolations beyond simpler approaches.

Current affiliation: Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania.

Corresponding author address: Jared W. Oyler, Earth and Environmental Systems Institute, The Pennsylvania State University, 2217 EES Bldg., University Park, PA 16802. E-mail: jared.oyler@psu.edu

Abstract

Remotely sensed land skin temperature (LST) is increasingly being used to improve gridded interpolations of near-surface air temperature. The appeal of LST as a spatial predictor of air temperature rests in the fact that it is an observation available at spatial resolutions fine enough to capture topoclimatic and biophysical variations. However, it remains unclear if LST improves air temperature interpolations over what can already be obtained with simpler terrain-based predictor variables. Here, the relationship between LST and air temperature is evaluated across the conterminous United States (CONUS). It is found that there are significant differences in the ability of daytime and nighttime observations of LST to improve air temperature interpolations. Daytime LST mainly indicates finescale biophysical variation and is generally a poorer predictor of maximum air temperature than simple linear models based on elevation, longitude, and latitude. Moderate improvements to maximum air temperature interpolations are thus limited to specific mountainous areas in winter, to coastal areas, and to semiarid and arid regions where daytime LST likely captures variations in evaporative cooling and aridity. In contrast, nighttime LST represents important topoclimatic variation throughout the mountainous western CONUS and significantly improves nighttime minimum air temperature interpolations. In regions of more homogenous terrain, nighttime LST also captures biophysical patterns related to land cover. Both daytime and nighttime LST display large spatial and seasonal variability in their ability to improve air temperature interpolations beyond simpler approaches.

Current affiliation: Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania.

Corresponding author address: Jared W. Oyler, Earth and Environmental Systems Institute, The Pennsylvania State University, 2217 EES Bldg., University Park, PA 16802. E-mail: jared.oyler@psu.edu
Save