• Andersson, A., , K. Fennig, , C. Klepp, , S. Bakan, , H. Graßl, , and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234, doi:10.5194/essd-2-215-2010.

    • Search Google Scholar
    • Export Citation
  • Bedka, S., , R. Knuteson, , H. Revercomb, , D. Tobin, , and D. Turner, 2010: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground‐truth sites: September 2002 through August 2008. J. Geophys. Res., 115, D17310, doi:10.1029/2009JD013139.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , M. R. P. Sapiano, , J. Horsman, , and C. Kummerow, 2013: Improved geolocation and Earth incidence angle information for a fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 15041513, doi:10.1109/TGRS.2012.2199761.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , F. R. Robertson, , and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Chelliah, M., , W. Ebisuzaki, , S. Weaver, , and A. Kumar, 2011: Evaluating the tropospheric variability in National Centers for Environmental Prediction’s climate forecast system reanalysis. J. Geophys. Res., 116, D17107, doi:10.1029/2011JD015707.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , J. Wang, , P. W. Thorne, , D. E. Parker, , L. Haimberger, , and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991, doi:10.1175/2010JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M., and et al. , 2014: The CrIMSS EDR algorithm: Characterization, optimization, and validation. J. Geophys. Res. Atmos., 119, 49534977, doi:10.1002/2013JD020438.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , R. S. Vose, , and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Fennig, K., , A. Andersson, , S. Bakan, , C.-P. Klepp, , and M. Schröder, 2012: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS 3.2—Monthly means/6-hourly composites. Satellite Application Facility on Climate Monitoring, accessed 22 March 2012, doi:10.5676/EUM_SAF_CM/HOAPS/V001.

  • Fennig, K., , A. Andersson, , and M. Schröder, 2013: Fundamental climate data record of SSM/I brightness temperatures. Satellite Application Facility on Climate Monitoring, doi:10.5676/EUM_SAF_CM/FCDR_SSMI/V001.

  • Hilburn, K. A., , and F. J. Wentz, 2008: Mitigating the impact of RADCAL beacon contamination on F15 SSM/I ocean retrievals. Geophys. Res. Lett., 35, L18806, doi:10.1029/2008GL034914.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., , F. J. Wentz, , C. A. Mears, , T. Meissner, , and D. K. Smith, 2010: Description of Remote Sensing Systems version-7 geophysical retrievals. 17th Conf. on Satellite Meteorology and Oceanography/17th Conf. on Air–Sea Interaction, Annapolis, MD, Amer. Meteor. Soc., JP1.5. [Available online at https://ams.confex.com/ams/17Air17Sat9Coas/webprogram/Paper174339.html.]

  • Hyland, R. W., , and A. Wexler, 1983: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Trans., 89, 500519.

    • Search Google Scholar
    • Export Citation
  • Ju, J., , and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, doi:10.1002/qj.49712152509.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , G. A. Schmidt, , D. Rind, , and R. A. Ruedy, 2010: Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330, 356359, doi:10.1126/science.1190653.

    • Search Google Scholar
    • Export Citation
  • Lindau, R., , and V. Venema, 2016: The uncertainty of break positions detected by homogenization algorithms in climate records. Int. J. Climatol., 36, 576589, doi:10.1002/joc.4366.

    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., , M. Stengel, , M. Schröder, , J. Fischer, , R. Preusker, , N. Schneider, , T. Steenbergen, , and B. Bojkov, 2014: A global climatology of total columnar water vapour from SSM/I and MERIS. Earth Syst. Sci. Data, 6, 221233, 2014, doi:10.5194/essd-6-221-2014.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , B. D. Santer, , F. J. Wentz, , K. E. Taylor, , and M. F. Wehner, 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.

    • Search Google Scholar
    • Export Citation
  • Mieruch, S., , M. Schröder, , S. Noel, , and J. Schulz, 2014: Comparison of decadal global water vapor changes derived from independent satellite time series. J. Geophys. Res. Atmos., 119, 12 48912 499, doi:10.1002/2014JD021588.

    • Search Google Scholar
    • Export Citation
  • Reale, T., , B. Sun, , F. H. Tilley, , and M. Pettey, 2012: The NOAA Products Validation System (NPROVS). J. Atmos. Oceanic Technol., 29, 629645, doi:10.1175/JTECH-D-11-00072.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2002: Pinatubo eruption: The climatic aftermath. Science, 295, 12421244, doi:10.1126/science.1069903.

  • Robock, A., , and C. Oppenheimer, Eds., 2003: Volcanism and the Earth’s Atmosphere. Geophys. Monogr., Vol. 139, Amer. Geophys. Union, 360 pp.

  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556, doi:10.1126/science.1114867.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., , and W. J. Emery, 1990: Atmospheric water vapor over oceans from SSM/I measurements. Int. J. Remote Sens., 11, 753766, doi:10.1080/01431169008955055.

    • Search Google Scholar
    • Export Citation
  • Schröder, M., , M. Jonas, , R. Lindau, , J. Schulz, , and K. Fennig, 2013: The CM SAF SSM/I- based total column water vapor climate data record: Methods and evaluation against re-analyses and satellite. Atmos. Meas. Tech., 6, 765775, doi:10.5194/amt-6-765-2013.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , R. Roca, , T. M. Weckwerth, , and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , R. T. Wetherald, , G. L. Stenchikov, , and A. Robock, 2002: Global cooling following the eruption of Mt. Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730, doi:10.1126/science.296.5568.727.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , and E. A. Smith, 2003: Explaining sources of discrepancy in SSM/I water vapor algorithms. J. Climate, 16, 32293255, doi:10.1175/1520-0442(2003)016<3229:ESODII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , J. Schmetz, , R. Stuhlmann, , and J.-Y. Lee, 2006: Dry bias in satellite-derived clear-sky water vapor and its contribution to longwave cloud radiative forcing. J. Climate, 19, 55705580, doi:10.1175/JCLI3948.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column- integrated atmospheric water vapour. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Venema, V., and et al. , 2012: Benchmarking homogenization algorithms for monthly data. Climate Past, 8, 89115, doi:10.5194/cp-8-89-2012.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., , J. L. Bytheway, , and J. M. Forsythe, 2012: Weather and climate analyses using improved global water vapor observations. Geophys. Res. Lett., 39, L16802, doi:10.1029/2012GL052094.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , L. Zhang, , A. Dai, , F. Immler, , M. Sommer, , and H. Vömel, 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008a: Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmos. Oceanic Technol., 25, 368384, doi:10.1175/2007JTECHA982.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. App. Meteor. Climatol., 47, 24232444, doi:10.1175/2008JAMC1741.1.

    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and et al. , 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 14917 161, doi:10.1029/98JD00995.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

  • Wentz, F. J., 2015: A 17-yr climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Climate, 28, 68826902, doi:10.1175/JCLI-D-15-0155.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 676 676 22
PDF Downloads 66 66 12

The GEWEX Water Vapor Assessment: Results from Intercomparison, Trend, and Homogeneity Analysis of Total Column Water Vapor

View More View Less
  • 1 Deutscher Wetterdienst, Offenbach, Germany
  • | 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 3 Colorado State University, Fort Collins, Colorado
  • | 4 Vanderbilt University, Nashville, Tennessee, and University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

The Global Energy and Water Cycle Exchanges project (GEWEX) water vapor assessment’s (G-VAP) main objective is to analyze and explain strengths and weaknesses of satellite-based data records of water vapor through intercomparisons and comparisons with ground-based data. G-VAP results from the intercomparison of six total column water vapor (TCWV) data records are presented. Prior to the intercomparison, the data records were regridded to a common regular grid of 2° × 2° longitude–latitude. All data records cover a common period from 1988 to 2008. The intercomparison is complemented by an analysis of trend estimates, which was applied as a tool to identify issues in the data records. It was observed that the trends over global ice-free oceans are generally different among the different data records. Most of these differences are statistically significant. Distinct spatial features are evident in maps of differences in trend estimates, which largely coincide with maxima in standard deviations from the ensemble mean. The penalized maximal F test has been applied to global ice-free ocean and selected land regional anomaly time series, revealing differences in trends to be largely caused by breakpoints in the different data records. The time, magnitude, and number of breakpoints typically differ from region to region and between data records. These breakpoints often coincide with changes in observing systems used for the different data records. The TCWV data records have also been compared with data from a radiosonde archive. For example, at Lindenberg, Germany, and at Yichang, China, such breakpoints are not observed, providing further evidence for the regional imprint of changes in the observing system.

Corresponding author address: Marc Schröder, Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: marc.schroeder@dwd.de

Abstract

The Global Energy and Water Cycle Exchanges project (GEWEX) water vapor assessment’s (G-VAP) main objective is to analyze and explain strengths and weaknesses of satellite-based data records of water vapor through intercomparisons and comparisons with ground-based data. G-VAP results from the intercomparison of six total column water vapor (TCWV) data records are presented. Prior to the intercomparison, the data records were regridded to a common regular grid of 2° × 2° longitude–latitude. All data records cover a common period from 1988 to 2008. The intercomparison is complemented by an analysis of trend estimates, which was applied as a tool to identify issues in the data records. It was observed that the trends over global ice-free oceans are generally different among the different data records. Most of these differences are statistically significant. Distinct spatial features are evident in maps of differences in trend estimates, which largely coincide with maxima in standard deviations from the ensemble mean. The penalized maximal F test has been applied to global ice-free ocean and selected land regional anomaly time series, revealing differences in trends to be largely caused by breakpoints in the different data records. The time, magnitude, and number of breakpoints typically differ from region to region and between data records. These breakpoints often coincide with changes in observing systems used for the different data records. The TCWV data records have also been compared with data from a radiosonde archive. For example, at Lindenberg, Germany, and at Yichang, China, such breakpoints are not observed, providing further evidence for the regional imprint of changes in the observing system.

Corresponding author address: Marc Schröder, Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: marc.schroeder@dwd.de
Save