• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , L. S. Darby, , J. D. Fast, , J. O. Pinto, , C. D. Whiteman, , W. J. Shaw, , and B. W. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. J. Appl. Meteor., 43, 13481365, doi:10.1175/JAM2142.1.

    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., 1997: An investigation of flow regimes affecting the Mexico City region. J. Appl. Meteor., 36, 119140, doi:10.1175/1520-0450(1997)036<0119:AIOFRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., , C. F. Mass, , and B. E. Potter, 2012: The West Coast thermal trough: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 38203843, doi:10.1175/MWR-D-12-00078.1.

    • Search Google Scholar
    • Export Citation
  • Butler, B., , J. Forthofer, , M. Finney, , L. Bradshaw, , and R. Stratton, 2006: High resolution wind direction and speed information for support of fire operations. Proc. Monitoring Science and Technology Symp.: Unifying Knowledge for Sustainability in the Western Hemisphere, Denver, CO, USDA Forest Service, Rocky Mountain Research Station, 595–602. [Available online at http://www.fs.fed.us/rm/pubs/rmrs_p042/rmrs_p042_595_602.pdf.]

  • Coen, J. L., , M. Cameron, , J. Michalakes, , E. G. Patton, , P. J. Riggan, , and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 1638, doi:10.1175/JAMC-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteor. Geophys. Bioclimatol., 1A, 421450.

    • Search Google Scholar
    • Export Citation
  • Dimitrova, R., , Z. Silver, , T. Zsedrovits, , C. Hocut, , L. Leo, , S. Di Sabatino, , and H. S. Fernando, 2016: Assessment of planetary boundary-layer schemes in the weather research and forecasting mesoscale model using MATERHORN field data. Bound.-Layer Meteor., 159, 589609, doi:10.1007/s10546-015-0095-8.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., , and T. W. Horst, 1983: Observations and models of simple nocturnal slope flows. J. Atmos. Sci., 40, 708717, doi:10.1175/1520-0469(1983)040<0708:OAMOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., , J. D. Fast, , and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Etherton, B., , and P. Santos, 2008: Sensitivity of WRF forecasts for south Florida to initial conditions. Wea. Forecasting, 23, 725740, doi:10.1175/2007WAF2006115.1.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and et al. , 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 19451967, doi:10.1175/BAMS-D-13-00131.1.

    • Search Google Scholar
    • Export Citation
  • Hart, K. A., , W. J. Steenburgh, , and D. J. Onton, 2005: Model forecast improvements with decreased horizontal grid spacing over finescale intermountain orography during the 2002 Olympic Winter Games. Wea. Forecasting, 20, 558576, doi:10.1175/WAF865.1.

    • Search Google Scholar
    • Export Citation
  • Hoch, S. W., , D. Jensen, , J. D. Massey, , E. R. Pardyjak, , and H. J. S. Fernando, 2014: Surface energy balance observations during MATERHORN. 16th Conf. on Mountain Meteorology, San Diego, CA, Amer. Meteor. Soc., 56. [Available online at https://ams.confex.com/ams/16MountMet/webprogram/Paper251564.html.]

  • Jeglum, M. E., , W. J. Steenburgh, , T. P. Lee, , and L. F. Bosart, 2010: Multi-reanalysis climatology of intermountain cyclones. Mon. Wea. Rev., 138, 40354053, doi:10.1175/2010MWR3432.1.

    • Search Google Scholar
    • Export Citation
  • Jerrett, M., and et al. , 2005: Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16, 727736, doi:10.1097/01.ede.0000181630.15826.7d.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , and J. Dudhia, 2013: On the ability of the WRF Model to reproduce the surface wind direction over complex terrain. J. Appl. Meteor. Climatol., 52, 16101617, doi:10.1175/JAMC-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., , and J. D. Horel, 2012: The climatology of synoptic-scale ascent over western North America: A perspective on storm tracks. Mon. Wea. Rev., 140, 17611778, doi:10.1175/MWR-D-11-00203.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., , C. D. Whiteman, , S. W. Hoch, , D. Jensen, , E. R. Pardyjak, , L. S. Leo, , S. Di Sabatino, , and H. J. S. Fernando, 2015: A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain. J. Appl. Meteor. Climatol., 54, 732751, doi:10.1175/JAMC-D-14-0223.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., , L. Zhang, , S. Kang, , L. Tong, , T. Du, , X. Hao, , and P. Zhao, 2015: Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions. Agric. For. Meteor., 208, 115, doi:10.1016/j.agrformet.2015.04.002.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 10771092, doi:10.1175/2007JAMC1653.1.

    • Search Google Scholar
    • Export Citation
  • Ludwig, F. L., , J. Horel, , and C. D. Whiteman, 2004: Using EOF analysis to identify important surface wind patterns in mountain valleys. J. Appl. Meteor., 43, 969983, doi:10.1175/1520-0450(2004)043<0969:UEATII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Massey, J. D., , W. J. Steenburgh, , S. W. Hoch, , and J. C. Knievel, 2014: Sensitivity of near-surface temperature forecasts to soil properties over a sparsely vegetated dryland region. J. Appl. Meteor. Climatol., 53, 19761995, doi:10.1175/JAMC-D-13-0362.1.

    • Search Google Scholar
    • Export Citation
  • Massey, J. D., , W. J. Steenburgh, , J. C. Knievel, , and W. Y. Y. Cheng, 2016: Regional soil moisture biases and their influence on WRF Model temperature forecasts over the Intermountain West. Wea. Forecasting, 31, 197216, doi:10.1175/WAF-D-15-0073.1.

    • Search Google Scholar
    • Export Citation
  • McGinley, J. A., , and J. S. Goerss, 1986: Effects of terrain height and blocking initialization on numerical simulation of alpine lee cyclogenesis. Mon. Wea. Rev., 114, 15781590, doi:10.1175/1520-0493(1986)114<1578:EOTHAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meybeck, M., , P. Green, , and C. Vörösmarty, 2001: A new typology for mountains and other relief classes: An application to global continental water resources and population distribution. Mt. Res. Dev., 21, 3445, doi:10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., , D. B. Parsons, , W. O. J. Brown, , S. Cohn, , N. Chamberlain, , and B. Morley, 2006: Coevolution of down-valley flow and the nocturnal boundary layer in complex terrain. J. Appl. Meteor. Climatol., 45, 14291449, doi:10.1175/JAM2412.1.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , T. T. Warner, , F. Chen, , and E. G. Astling, 2002: Mechanisms for diurnal boundary layer circulations in the Great Basin Desert. Mon. Wea. Rev., 130, 921938, doi:10.1175/1520-0493(2002)130<0921:MFDBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , C. A. Davis, , Y. Liu, , and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569, doi:10.1175/MWR2801.1.

    • Search Google Scholar
    • Export Citation
  • Serafin, S., , S. J. De Wekker, , and J. Knievel, 2015: A mesoscale model-based climatography of nocturnal boundary-layer characteristics over the complex terrain of north-western Utah. Bound.-Layer Meteor., 159, 495519, doi:10.1007/s10546-015-0044-6.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, doi:10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., and et al. , 2007: A sinkhole field experiment in the eastern Alps. Bull. Amer. Meteor. Soc., 88, 701716, doi:10.1175/BAMS-88-5-701.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. Q., , C. D. Whiteman, , W. J. Steenburgh, , and X. Bian, 2002: A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull. Amer. Meteor. Soc., 83, 699708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, M., , and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617637, doi:10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Weissmann, M., , F. J. Braun, , L. Gantner, , G. J. Mayr, , S. Rahm, , and O. Reitebuch, 2005: The Alpine mountain–plain circulation: Airborne Doppler lidar measurements and numerical simulations. Mon. Wea. Rev., 133, 30953109, doi:10.1175/MWR3012.1.

    • Search Google Scholar
    • Export Citation
  • West, G. L., , and W. J. Steenburgh, 2010: Life cycle and mesoscale frontal structure of an intermountain cyclone. Mon. Wea. Rev., 138, 25282545, doi:10.1175/2010MWR3274.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., , and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, doi:10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , and S. Zhong, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: Observations. J. Appl. Meteor. Climatol., 47, 20232038, doi:10.1175/2007JAMC1669.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , S. W. Hoch, , J. D. Horel, , and A. Charland, 2014: Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ., 94, 742753, doi:10.1016/j.atmosenv.2014.06.012.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., and et al. , 2014: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 16991718, doi:10.1175/BAMS-D-14-00107.1.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., , and C. D. Whiteman, 2012: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 35–119.

  • Zumpfe, D. E., , and J. D. Horel, 2007: Lake-breeze fronts in the Salt Lake Valley. J. Appl. Meteor. Climatol., 46, 196211, doi:10.1175/JAM2449.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 13
PDF Downloads 27 27 15

Multiscale Characteristics of Surface Winds in an Area of Complex Terrain in Northwest Utah

View More View Less
  • 1 The University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

Climatological features of the surface wind on diurnal and seasonal time scales over a 17-yr period in an area of complex terrain at Dugway Proving Ground in northwestern Utah are analyzed, and potential synoptic-scale, mesoscale, and microscale forcings on the surface wind are identified. Analysis of the wind climatology at 26 automated weather stations revealed a bimodal wind direction distribution at times when thermally driven circulations were expected to produce a single primary direction. The two modes of this distribution are referred to as the “northerly” and “southerly” regimes. The northerly regime is most frequent in May, and the southerly regime is most frequent in August. January, May, and August constitute a “tripole seasonality” of the wind evolution. Although both regimes occur in all months, the monthly changes in regime frequency are related to changes in synoptic and mesoscale phenomena including the climatological position of the primary synoptic baroclinic zone in the western United States, interaction of the large-scale flow with the Sierra Nevada, and thermal low pressure systems that form in the Intermountain West in summer. Numerous applications require accurate forecasts of surface winds in complex terrain, yet mesoscale models perform relatively poorly in these areas, contributing to poor operational forecast skill. Knowledge of the climatologically persistent wind flows and their potential forcings will enable relevant model deficiencies to be addressed.

Corresponding author address: Matthew E. Jeglum, The University of Utah, 135 S. 1460 East Rm. 819, Salt Lake City, UT 84112-0110. E-mail: m.jeglum@utah.edu

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Abstract

Climatological features of the surface wind on diurnal and seasonal time scales over a 17-yr period in an area of complex terrain at Dugway Proving Ground in northwestern Utah are analyzed, and potential synoptic-scale, mesoscale, and microscale forcings on the surface wind are identified. Analysis of the wind climatology at 26 automated weather stations revealed a bimodal wind direction distribution at times when thermally driven circulations were expected to produce a single primary direction. The two modes of this distribution are referred to as the “northerly” and “southerly” regimes. The northerly regime is most frequent in May, and the southerly regime is most frequent in August. January, May, and August constitute a “tripole seasonality” of the wind evolution. Although both regimes occur in all months, the monthly changes in regime frequency are related to changes in synoptic and mesoscale phenomena including the climatological position of the primary synoptic baroclinic zone in the western United States, interaction of the large-scale flow with the Sierra Nevada, and thermal low pressure systems that form in the Intermountain West in summer. Numerous applications require accurate forecasts of surface winds in complex terrain, yet mesoscale models perform relatively poorly in these areas, contributing to poor operational forecast skill. Knowledge of the climatologically persistent wind flows and their potential forcings will enable relevant model deficiencies to be addressed.

Corresponding author address: Matthew E. Jeglum, The University of Utah, 135 S. 1460 East Rm. 819, Salt Lake City, UT 84112-0110. E-mail: m.jeglum@utah.edu

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Save