• Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barja, B., and J. C. Antuna, 2011: The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba. Atmos. Chem. Phys., 11, 86258634, doi:10.5194/acp-11-8625-2011.

    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res., 119, 94929508, doi:10.1002/2014JD021458.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmosphere Radiation Measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19, 431442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., K. Sassen, and E. J. Welton, 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25, 685700, doi:10.1175/2007JTECHA1034.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, doi:10.5194/amt-8-435-2015.

    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, doi:10.1016/j.atmosenv.2011.08.017.

    • Search Google Scholar
    • Export Citation
  • Corti, T., and T. Peter, 2009: A simple model for cloud radiative forcing. Atmos. Chem. Phys., 9, 57515758, doi:10.5194/acp-9-5751-2009.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations 1. Theory and examples. J. Geophys. Res., 106, 27 42527 448, doi:10.1029/2001JD900243.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, doi:10.1364/AO.23.000652.

  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812, doi:10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., M. Baker, and D. L. Hartman, 2002: Tropical cirrus and water vapor: An effective Earth infrared iris feedback? Atmos. Chem. Phys., 2, 3137, doi:10.5194/acp-2-31-2002.

    • Search Google Scholar
    • Export Citation
  • Garnier, A., J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson, 2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 27592774, doi:10.5194/amt-8-2759-2015.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud–radiation processes in the UCLA general circulation model. J. Climate, 16, 33573370, doi:10.1175/1520-0442(2003)016<3357:POCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to −86°C: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53, 479505, doi:10.1175/JAMC-D-13-087.1.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., S. Kinne, and O. B. Toon, 1994: Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophys. Res. Lett., 21, 20232026, doi:10.1029/94GL01358.

    • Search Google Scholar
    • Export Citation
  • Jin, M., and S. Liang, 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19, 28672881, doi:10.1175/JCLI3720.1.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 2002: Microphysical processes in cirrus and their impact on radiation. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 397–432.

  • Liou, K.-N., 1986: The influence of cirrus on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 19401947, doi:10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., Y. Gu, Q. Yue, and G. McFarguhar, 2008: On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models. Geophys. Res. Lett., 35, L13805, doi:10.1029/2008GL033918.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Min, M., P. Wang, J. R. Campbell, X. Zong, and Y. Li, 2010: Midlatitude cirrus cloud radiative forcing over China. J. Geophys. Res., 115, D20210, doi:10.1029/2010JD014161.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, doi:10.1175/JAMC-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, doi:10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247, doi:10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Strahler, A. H., and Coauthors, 1999: MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. NASA EOS-MODIS Doc. ATBD-MOD-09, 53 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf.]

  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Sun, W., G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 116, D22207, doi:10.1029/2010JG001573.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Q. Fu, and J. Comstock, 2011: Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 151–158.

  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718, doi:10.1029/1999JD900755.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mischenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 506 135 13
PDF Downloads 349 87 8

Daytime Cirrus Cloud Top-of-the-Atmosphere Radiative Forcing Properties at a Midlatitude Site and Their Global Consequences

James R. CampbellNaval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
,
Simone LolliJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Simone Lolli in
Current site
Google Scholar
PubMed
Close
,
Jasper R. LewisJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Jasper R. Lewis in
Current site
Google Scholar
PubMed
Close
,
Yu GuUniversity of California, Los Angeles, Los Angeles, California

Search for other papers by Yu Gu in
Current site
Google Scholar
PubMed
Close
, and
Ellsworth J. WeltonNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ellsworth J. Welton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.07–0.67 W m−2 in sample-relative terms, which reduces to 0.03–0.27 W m−2 in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud undersampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth ≤ 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive/negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

Corresponding author address: James R. Campbell, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943. E-mail: james.campbell@nrlmry.navy.mil

Abstract

One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.07–0.67 W m−2 in sample-relative terms, which reduces to 0.03–0.27 W m−2 in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud undersampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth ≤ 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive/negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

Corresponding author address: James R. Campbell, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943. E-mail: james.campbell@nrlmry.navy.mil
Save