• Avery, M., D. Winker, A. J. Heymsfield, M. Vaughan, S. A. Young, Y. Hu, and C. Trepte, 2012: Cloud ice water content retrieved from the CALIOP space-based lidar. Geophys. Res. Lett., 39, L05808, doi:10.1029/2011GL050545.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 1029, doi:10.1016/j.atmosres.2011.06.021.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., A. Protat, A. Plana-Fattori, M. Giraud, J.-P. Vinson, and N. Grand, 2008: Comparison of airborne and spaceborne 95-GHz radar reflectivity and evaluation of multiple scattering effects in spaceborne measurements. J. Atmos. Oceanic Technol., 25, 19831995, doi:10.1175/2008JTECHA1011.1.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating the representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 19711991, doi:10.1175/2010JAMC2333.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, doi:10.1175/2009JTECHA1258.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317, doi:10.1002/qj.389.

    • Search Google Scholar
    • Export Citation
  • Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part 1: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670694, doi:10.1175/1520-0493(1987)115<0670:ATSLOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 19091922, doi:10.1175/JAMC-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Davison, C. R., J. D. MacLeod, and J. W. Strapp, 2009: Naturally aspirating isokinetic total water content probe: Evaporator design and testing. Proc. First AIAA Atmospheric and Space Environments Conf., San Antonio, TX, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2009-3861.

  • Davison, C. R., J. W. Strapp, L. E. Lilie, T. P. Ratvasky, and C. Dumont, 2016: Isokinetic TWC evaporator probe: Calculations and system uncertainty analysis. Proc. Eighth AIAA Atmospheric and Space Environments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2016-4060.

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy, J.-F. Gayet, and C. Jouan, 2013: Comparison of airborne in situ, airborne radar–lidar, and spaceborne radar–lidar retrievals of polar ice cloud properties sampled during the POLARCAT campaign. J. Atmos. Oceanic Technol., 30, 5773, doi:10.1175/JTECH-D-11-00200.1.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Heymsfield, A. Protat, A. Bansemer, and R. J. Hogan, 2014: Normalized particle size distribution for remote sensing application. J. Geophys. Res. Atmos., 119, 42044227, doi:10.1002/2013JD020700.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Search Google Scholar
    • Export Citation
  • Dezitter, F., A. Grandin, J. L. Brenguier, F. Hervy, H. Schlager, P. Villedieu, and G. Zalamansky, 2013: HAIC—High altitude ice crystals. Proc. Fifth AIAA Atmospheric and Space Environments Conf., San Diego, CA, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2013-2674.

  • EASA, 2011: Large aeroplane certification specifications in supercooled large drop, mixed phase, and ice crystal icing conditions. Notice of Proposed Amendment (NPA) 2011-03, European Aviation Safety Agency, 77 pp. [Available online at http://easa.europa.eu/system/files/dfu/NPA%202011-03.pdf.]

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical and oceanic convection. Atmos. Chem. Phys., 14, 11 36711 392, doi:10.5194/acp-14-11367-2014.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118135, doi:10.1175/1520-0493(1982)110<0118:MAMAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013: A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J. Appl. Meteor. Climatol., 52, 22782295, doi:10.1175/JAMC-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Government Printing Office, 2010: Federal Aviation Administration Notice of Proposed Rulemaking: Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions. Federal Register, Vol. 75, No. 124, 37 311–37 339. [Available online at http://edocket.access.gpo.gov/2010/pdf/2010-15726.pdf.]

  • Grandin, A., J.-M. Merle, M. Weber, J. W. Strapp, A. Protat, and P. King, 2014: AIRBUS flight tests in high ice water content regions. Proc. Sixth AIAA Atmospheric and Space Environments Conf., Atlanta, GA, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2014-2753.

  • Grzych, M., and J. Mason, 2010: Weather conditions associated with jet engine power loss and damage due to ingestion of ice particles: What we’ve learned through 2009. Preprints, 14th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 6.8. [Available online at https://ams.confex.com/ams/90annual/techprogram/paper_165923.htm.]

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, doi:10.1175/JTECH-D-13-00239.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., D. Starr, and O. B. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85, 4550, doi:10.1029/2004EO050002.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., L. J. Angus, and A. J. Heymsfield, 1998: Cloud particle measurements in thunderstorm anvils and possible threat to aviation. J. Aircr., 35, 113121, doi:10.2514/2.2268.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Li, L., G. M. Heymsfield, L. Tian, and P. E. Racette, 2005: Measurements of ocean surface backscattering using an airborne 95-GHz cloud radar—Implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22, 10331045, doi:10.1175/JTECH1722.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2010: Cloud properties and radiative forcing over the maritime storm tracks of the North Atlantic and Southern Ocean as derived from A-Train. J. Geophys. Res., 115, D10201, doi:10.1029/2009JD012517.

    • Search Google Scholar
    • Export Citation
  • Mason, J. G., J. W. Strapp, and P. Chow, 2006: The ice particle threat to engines in flight. Proc. 44th AIAA Aerospace Sciences Meeting, Reno, NV, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2006-206.

  • Matrosov, S. Y., and A. J. Heymsfield, 2008: Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements. J. Geophys. Res., 113, D00A05, doi:10.1029/2007JD009633.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19, 10031018, doi:10.1175/1520-0426(2002)019<1003:PCIMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 10561071, doi:10.1175/1520-0493(1999)127<1056:VVCODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130, 22282239, doi:10.1175/1520-0493(2002)130<2228:CWPPRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575, doi:10.1016/0022-4073(96)00002-7.

    • Search Google Scholar
    • Export Citation
  • Nishi, N., M. K. Yamamoto, T. Shimomai, A. Hamada, and S. Fukao, 2007: Fine structure of vertical motion in the stratiform precipitation region observed by a VHF Doppler radar installed in Sumatra, Indonesia. J. Appl. Meteor. Climatol., 46, 522537, doi:10.1175/JAM2480.1.

    • Search Google Scholar
    • Export Citation
  • Oguchi, T., 1983: Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE, 71, 10291078, doi:10.1109/PROC.1983.12724.

    • Search Google Scholar
    • Export Citation
  • Penide, G., V. Kumar, A. Protat, and P. T. May, 2013a: Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the north Australian wet season. Mon. Wea. Rev., 141, 32223237, doi:10.1175/MWR-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Penide, G., A. Protat, V. Kumar, and P. T. May, 2013b: Comparison of two convective/stratiform precipitation classification techniques: Horizontal reflectivity texture versus drop size distribution–based approach. J. Atmos. Oceanic Technol., 30, 27882797, doi:10.1175/JTECH-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449, doi:10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50, 21202138, doi:10.1175/JAMC-D-10-05031.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2004: Le projet RALI: Combinaison d’un radar nuage et d’un lidar pour l’étude des nuages faiblement précipitants (A combination of cloud radar and lidar for the study of precipitating low clouds). Météorologie, 47, 2333, doi:10.4267/2042/36076.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. Brown, 2007: Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database. J. Appl. Meteor. Climatol., 46, 557572, doi:10.1175/JAM2488.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, E. O’Connor, and T. L’Ecuyer, 2010a: The evaluation of CloudSat-derived ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27, 793810, doi:10.1175/2009JTECHA1397.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, A. Plana-Fattori, P. T. May, and E. O’Connor, 2010b: The statistical properties of tropical ice clouds generated by the West African and Australian monsoons from ground-based radar–lidar observations. Quart. J. Roy. Meteor. Soc., 136 (S1), 345363, doi:10.1002/qj.490.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, P. T. May, J. Haynes, C. Jakob, E. O’ Connor, M. Pope, and M. Wheeler, 2011: The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia. Atmos. Chem. Phys., 11, 83638384, doi:10.5194/acp-11-8363-2011.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421754, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2016a: The High Ice Water Content (HIWC) study of deep convective clouds: Science and technical plan. FAA Rep. DOT/FAA/TC-14/31, in press.

  • Strapp, J. W., L. E. Lilie, T. P. Ratvasky, C. R. Davison, and C. Dumont, 2016b: Isokinetic TWC evaporator probe: Development of the IKP2 and performance testing for the HAIC-HIWC Darwin 2014 and Cayenne-2015 field campaigns. Proc. Eighth AIAA Atmospheric and Space Environments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, paper 2016–4059, doi:org/10.2514/6.2016-4059.

  • Su, H., J. H. Jiang, D. G. Vane, and G. L. Stephens, 2008: Observed vertical structure of tropical oceanic clouds sorted in large-scale regimes. Geophys. Res. Lett., 35, L24704, doi:10.1029/2008GL035888.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, doi:10.1175/2010JTECHA1349.1.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves: NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156, doi:10.1175/2009BAMS2728.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 823 185 18
PDF Downloads 728 182 19

The Measured Relationship between Ice Water Content and Cloud Radar Reflectivity in Tropical Convective Clouds

A. Protat Research and Development Branch, Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by A. Protat in
Current site
Google Scholar
PubMed
Close
,
J. Delanoë Laboratoire des Atmosphère Milieux Observations Spatiales (LATMOS), Guyancourt, France

Search for other papers by J. Delanoë in
Current site
Google Scholar
PubMed
Close
,
J. W. Strapp Met Analytics Inc., Toronto, Ontario, Canada

Search for other papers by J. W. Strapp in
Current site
Google Scholar
PubMed
Close
,
E. Fontaine Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by E. Fontaine in
Current site
Google Scholar
PubMed
Close
,
D. Leroy Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by D. Leroy in
Current site
Google Scholar
PubMed
Close
,
A. Schwarzenboeck Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by A. Schwarzenboeck in
Current site
Google Scholar
PubMed
Close
,
L. Lilie Science Engineering Associates, Mansfield Center, Connecticut

Search for other papers by L. Lilie in
Current site
Google Scholar
PubMed
Close
,
C. Davison National Research Council Canada, Ottawa, Ontario, Canada

Search for other papers by C. Davison in
Current site
Google Scholar
PubMed
Close
,
F. Dezitter Airbus, Inc., Toulouse, France

Search for other papers by F. Dezitter in
Current site
Google Scholar
PubMed
Close
,
A. Grandin Airbus, Inc., Toulouse, France

Search for other papers by A. Grandin in
Current site
Google Scholar
PubMed
Close
, and
M. Weber Airbus, Inc., Toulouse, France

Search for other papers by M. Weber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, unprecedented bulk measurements of ice water content (IWC) up to approximately 5 g m−3 and 95-GHz radar reflectivities Z95 are used to analyze the statistical relationship between these two quantities and its variability. The unique aspect of this study is that these IWC–Z95 relationships do not use assumptions on cloud microphysics or backscattering calculations. IWCs greater than 2 g m−3 are also included for the first time in such an analysis, owing to improved bulk IWC probe technology and a flight program targeting high ice water content. Using a single IW–Z95 relationship allows for the retrieval of IWC from radar reflectivities with less than 30% bias and 40%–70% rms difference. These errors can be reduced further, down to 10%–20% bias over the whole IWC range, using the temperature variability of this relationship. IWC errors largely increase for Z95 > 16 dBZ, as a result of the distortion of the IWC–Z95 relationship by non-Rayleigh scattering effects. A nonlinear relationship is proposed to reduce these errors down to 20% bias and 20%–35% rms differences. This nonlinear relationship also outperforms the temperature-dependent IWC–Z95 relationship for convective profiles. The joint frequency distribution of IWC and temperature within and around deep tropical convective cores shows that at the −50° ± 5°C level, the cruise altitude of many commercial jet aircraft, IWCs greater than 1.5 g m−3 were found exclusively in convective profiles.

Corresponding author address: Alain Protat, Australian Bureau of Meteorology, 700 Collins St., Docklands, Melbourne, VIC 3008, Australia. E-mail: a.protat@bom.gov.au

Abstract

In this paper, unprecedented bulk measurements of ice water content (IWC) up to approximately 5 g m−3 and 95-GHz radar reflectivities Z95 are used to analyze the statistical relationship between these two quantities and its variability. The unique aspect of this study is that these IWC–Z95 relationships do not use assumptions on cloud microphysics or backscattering calculations. IWCs greater than 2 g m−3 are also included for the first time in such an analysis, owing to improved bulk IWC probe technology and a flight program targeting high ice water content. Using a single IW–Z95 relationship allows for the retrieval of IWC from radar reflectivities with less than 30% bias and 40%–70% rms difference. These errors can be reduced further, down to 10%–20% bias over the whole IWC range, using the temperature variability of this relationship. IWC errors largely increase for Z95 > 16 dBZ, as a result of the distortion of the IWC–Z95 relationship by non-Rayleigh scattering effects. A nonlinear relationship is proposed to reduce these errors down to 20% bias and 20%–35% rms differences. This nonlinear relationship also outperforms the temperature-dependent IWC–Z95 relationship for convective profiles. The joint frequency distribution of IWC and temperature within and around deep tropical convective cores shows that at the −50° ± 5°C level, the cruise altitude of many commercial jet aircraft, IWCs greater than 1.5 g m−3 were found exclusively in convective profiles.

Corresponding author address: Alain Protat, Australian Bureau of Meteorology, 700 Collins St., Docklands, Melbourne, VIC 3008, Australia. E-mail: a.protat@bom.gov.au
Save