• Baars, J. A., M. Witiw, A. Al-Habash, and J. Ramaprasad, 2003: Determining fog type in the Los Angeles basin using historic surface observation data. Proc. 16th Conf. on Probability and Statistics in the Atmospheric Sciences, Long Beach, CA, Amer. Meteor. Soc., J3.8. [Available online at https://ams.confex.com/ams/pdfpapers/29133.pdf.]

  • Bari, D., T. Bergot, and M. El Khlifi, 2015: Numerical study of a coastal fog event over Casablanca, Morocco. Quart. J. Roy. Meteor. Soc., 141, 18941905, doi:10.1002/qj.2494.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 12181230, doi:10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., D. Carrer, J. Noilhan, and P. Bougeault, 2005: Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Wea. Forecasting, 20, 627646, doi:10.1175/WAF873.1.

    • Search Google Scholar
    • Export Citation
  • Cropper, T. E., E. Hanna, and G. R. Bigg, 2014: Spatial and temporal seasonal trends in coastal upwelling off northwest Africa, 1981–2012. Deep-Sea Res. I, 86, 94111, doi:10.1016/j.dsr.2014.01.007.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119, 324341, doi:10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorova, N., V. Levit, and D. Fedorov, 2008: Fog and stratus formation on the coast of Brazil. Atmos. Res., 87, 268278, doi:10.1016/j.atmosres.2007.11.008.

    • Search Google Scholar
    • Export Citation
  • George, J., 1951: Fog. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1179–1189.

  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 219, doi:10.1016/j.atmosres.2014.04.014.

    • Search Google Scholar
    • Export Citation
  • Houssos, E. E., C. J. Lolis, A. Gkikas, N. Hatzianastassiou, and A. Bartzokas, 2012: On the atmospheric circulation characteristics associated with fog in Ioannina, north-western Greece. Int. J. Climatol., 32, 18471862, doi:10.1002/joc.2399.

    • Search Google Scholar
    • Export Citation
  • Huang, H., H. Liu, J. Huang, W. Mao, and X. Bi, 2015: Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon. Wea. Rev., 143, 19071923, doi:10.1175/MWR-D-14-00207.1.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. Lewis, W. T. Thompson, C. E. Dorman, and J. A. Businger, 2001: Transition of stratus into fog along the California coast: Observations and modeling. J. Atmos. Sci., 58, 17141731, doi:10.1175/1520-0469(2001)058<1714:TOSIFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., C. E. Dorman, J. M. Lewis, J. G. Hudson, E. M. Wilcox, and A. Torregrosa, 2014: Marine fog: A review. Atmos. Res., 143, 142175, doi:10.1016/j.atmosres.2013.12.012.

    • Search Google Scholar
    • Export Citation
  • Li, P., G. Fu, and C. Lu, 2012: Large-scale environmental influences on the onset, maintenance, and dissipation of six sea fog cases over the yellow sea. Pure Appl. Geophys., 169, 9831000, doi:10.1007/s00024-011-0348-5.

    • Search Google Scholar
    • Export Citation
  • Meyer, M. B., and G. G. Lala, 1990: Climatological aspects of radiation fog occurrence at Albany, New York. J. Climate, 3, 577586, doi:10.1175/1520-0442(1990)003<0577:CAORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roquelaure, S., R. Tardif, S. Remy, and T. Bergot, 2009: Skill of a ceiling and visibility Local Ensemble Prediction System (LEPS) according to fog-type prediction at Paris-Charles de Gaulle Airport. Wea. Forecasting, 24, 15111523, doi:10.1175/2009WAF2222213.1.

    • Search Google Scholar
    • Export Citation
  • Ryznar, E., 1977: Advection-radiation fog near Lake Michigan. Atmos. Environ., 11, 427430, doi:10.1016/0004-6981(77)90004-X.

  • Setiono, R., S. L. Pan, M. H. Hsieh, and A. Azcarraga, 2005: Automatic knowledge extraction from survey data: Learning M-of-N constructs using a hybrid approach. J. Oper. Res. Soc. Amer., 56, 314, doi:10.1057/palgrave.jors.2601807.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., 1995: Applied Multivariate Techniques. John Wiley and Sons, 512 pp.

  • Steyn, A., F. Smit, S. D. Toit, and C. Strasheim, 1994: Modern Statistics in Practice. J. L. Van Schaik, 761 pp.

  • Stolaki, S. N., S. A. Kazadzis, D. V. Foris, and T. S. Karacostas, 2009: Fog characteristics at the airport of Thessaloniki, Greece. Nat. Hazards Earth Syst. Sci., 9, 15411549, doi:10.5194/nhess-9-1541-2009.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York City region. J. Appl. Meteor. Climatol., 46, 11411168, doi:10.1175/JAM2516.1.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., and R. M. Rasmussen, 2008: Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. J. Appl. Meteor. Climatol., 47, 16811703, doi:10.1175/2007JAMC1734.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1917: The formation of fog and mist. Quart. J. Roy. Meteor. Soc., 43, 241268, doi:10.1002/qj.49704318302.

  • Tibshirani, R., G. Walther, and T. Hastie, 2001: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc., 63A, 411423, doi:10.1111/1467-9868.00293.

    • Search Google Scholar
    • Export Citation
  • Van Schalkwyk, L., and L. L. Dyson, 2013: Climatological characteristics of fog at Cape Town International Airport. Wea. Forecasting, 28, 631646, doi:10.1175/WAF-D-12-00028.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 1992: International Meteorological Vocabulary. 2nd ed. World Meteorological Organization, 784 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 91 14
PDF Downloads 353 88 8

Local Meteorological and Large-Scale Weather Characteristics of Fog over the Grand Casablanca Region, Morocco

Driss BariDirection de la Météorologie Nationale, Casablanca, Morocco

Search for other papers by Driss Bari in
Current site
Google Scholar
PubMed
Close
,
Thierry BergotMétéo-France/CNRM, Toulouse, France

Search for other papers by Thierry Bergot in
Current site
Google Scholar
PubMed
Close
, and
Mohamed El KhlifiUniversity Hassan II of Casablanca/FSTM-LMCM, Casablanca, Morocco

Search for other papers by Mohamed El Khlifi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a fog event approach, the local meteorological and synoptic characteristics of fogs that formed over the Grand Casablanca (GCB) region during a 9-yr period (2001–09) are investigated. A climatological study of fog, with emphasis on the fog temporal variability and spatial distribution, is carried out on the basis of hourly surface meteorological observations at two synoptic stations in the region. The fog events are classified into fog types, using an objective classification algorithm, and are characterized by their duration, intensity, and times of onset and dissipation. In addition, fog events are classified into two distinct categories (isolated and widespread) on the basis of their spatial extent. K-means cluster analysis is applied to the patterns of mean sea level pressure in ERA-Interim reanalyses at 0000 UTC to determine the synoptic circulation types associated with fog occurrence in the GCB region. Results show that the fog frequency at the inland suburban station is more recurrent than at the coastal urban station. The fog events are predominantly of the advection–radiation type, with a marked tendency of nighttime occurrence during the winter. The spatial distribution analysis points out the localized character of fog and reveals the possibility of different fog types occurring when fog is present near the two stations simultaneously. Furthermore, the interaction between local- and large-scale mechanisms suggests that advective processes associated with sea-breeze circulation during daytime, followed by radiative processes early in the night, often lead to fog formation over the GCB region.

Corresponding author address: Driss Bari, Direction de la Météorologie Nationale, CNRM-SRAPN, B.P. 21630, Sidi El Khadir, C.P. 20233 Casablanca, Morocco. E-mail: bari.driss@gmail.com

Abstract

Using a fog event approach, the local meteorological and synoptic characteristics of fogs that formed over the Grand Casablanca (GCB) region during a 9-yr period (2001–09) are investigated. A climatological study of fog, with emphasis on the fog temporal variability and spatial distribution, is carried out on the basis of hourly surface meteorological observations at two synoptic stations in the region. The fog events are classified into fog types, using an objective classification algorithm, and are characterized by their duration, intensity, and times of onset and dissipation. In addition, fog events are classified into two distinct categories (isolated and widespread) on the basis of their spatial extent. K-means cluster analysis is applied to the patterns of mean sea level pressure in ERA-Interim reanalyses at 0000 UTC to determine the synoptic circulation types associated with fog occurrence in the GCB region. Results show that the fog frequency at the inland suburban station is more recurrent than at the coastal urban station. The fog events are predominantly of the advection–radiation type, with a marked tendency of nighttime occurrence during the winter. The spatial distribution analysis points out the localized character of fog and reveals the possibility of different fog types occurring when fog is present near the two stations simultaneously. Furthermore, the interaction between local- and large-scale mechanisms suggests that advective processes associated with sea-breeze circulation during daytime, followed by radiative processes early in the night, often lead to fog formation over the GCB region.

Corresponding author address: Driss Bari, Direction de la Météorologie Nationale, CNRM-SRAPN, B.P. 21630, Sidi El Khadir, C.P. 20233 Casablanca, Morocco. E-mail: bari.driss@gmail.com
Save