• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 18871892, doi:10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2013: Variability in millimeter wave scattering properties of dendritic ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 131, 105114, doi:10.1016/j.jqsrt.2013.05.009.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

  • Brown, J. M., and Coauthors, 2011: Improvement and testing of WRF physics options for application to Rapid Refresh and High Resolution Rapid Refresh. 14th Conf. on Mesoscale Processes/15th Conf. on Aviation, Range, and Aerospace Meteorology, Los Angeles, CA, Amer. Meteor. Soc., 5.5. [Available online at https://ams.confex.com/ams/14Meso15ARAM/webprogram/Handout/Paper191234/055_brown.pdf.]

  • Carlson, C. A., and G. S. Forbes, 1989: A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers. J. Atmos. Oceanic Technol., 6, 769778, doi:10.1175/1520-0426(1989)006<0769:ACSUKQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the coterminous U.S. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 1–14. [Available online at http://www.westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf.]

  • Chen, J., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, doi:10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, doi:10.5194/acp-12-2055-2012.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Appl. Meteor. Climatol., 25, 16581680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukao, S., Y. Maekawa, Y. Sonoi, and F. Yoshino, 1991: Dual polarization radar observation of thunderclouds on the coast of the Sea of Japan in the winter season. Geophys. Res. Lett., 18, 179182, doi:10.1029/90GL02669.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, doi:10.1175/JAS-D-14-0297.1.

    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, V. N. Bringi, S. A. Rutledge, P. C. Kennedy, D. Brunkow, J. George, and R. Bowie, 2015: Transformation of the CSU–CHILL radar facility to a dual-frequency, dual-polarization, Doppler system. Bull. Amer. Meteor. Soc., 96, 975996, doi:10.1175/BAMS-D-13-00150.1.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1972: Measurement of individual falling velocity of snow crystals. J. Meteor. Soc. Japan, 50, 544583.

  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and M. P. Langleben, 1954: A theory of snow-crystal habit and growth. J. Meteor., 11, 104120, doi:10.1175/1520-0469(1954)011<0104:ATOSCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: A theory of snow-crystal habit and growth. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D., E. Saltikoff, and M. Leskinen, 2009: Dual-polarization weather radar observations of snow growth processes. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 13B.2. [Available online at https://ams.confex.com/ams/pdfpapers/156123.pdf.]

  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, doi:10.1175/JAMC-D-14-0315.1.

    • Search Google Scholar
    • Export Citation
  • Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403424, doi:10.1175/JAMC-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at https://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. D. Reeves, M. R. Kumjian, T. Tschallener, S. Troemel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, doi:10.1175/JTECH-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar observations of dendritic growth zones in Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, doi:10.1175/JAMC-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66, 37323743, doi:10.1175/2009JAS3113.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, M. Poellot, and E. Eloranta, 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25, 547557, doi:10.1175/2007JTECHA1007.1.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., and I. Zawadzki, 2010: Exploring snow microphysics with VertiX. Proc. Sixth European Conf. on Radar Meteorology, Sibiu, Romania, Meteo Romania, P18.13. [Available online at https://www.yumpu.com/en/document/view/36101690/p1813-erad-2010.]

  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603615, doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 2013: Observations of snow growth by a vertically pointing radar. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 11A.6. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper229071/IZ_AMS%202013%20Ext%20Abstract.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 99 8
PDF Downloads 259 82 4

Connecting Microphysical Processes in Colorado Winter Storms with Vertical Profiles of Radar Observations

Robert S. SchromDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Robert S. Schrom in
Current site
Google Scholar
PubMed
Close
and
Matthew R. KumjianDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To better connect radar observations to microphysical processes, the authors analyze concurrent polarimetric radar observations at vertical incidence and roughly side incidence during the Front Range Orographic Storms (FROST) project. Data from three events show signatures of riming, aggregation, and dendritic growth. Riming and the growth of graupel are suggested by negative differential reflectivity ZDR and vertically pointing Doppler velocity magnitude |VR| > 2.0 m s−1; aggregation is indicated by maxima in the downward-relative gradient of radar reflectivity at horizontal polarization ZH below the −15°C isotherm and positive downward-relative gradients in |VR| when averaged over time. A signature of positive downward-relative gradients in ZH, negative downward-relative gradients in |VR|, and maxima in ZDR is observed near −15°C during all three events. This signature may be indicative of dendritic growth; preexisting, thick platelike crystals fall faster and grow slower than dendrites, allowing for |VR| to shift toward the slower-falling, rapidly growing dendrites. To test this hypothesis, simplified calculations of the ZH and |VR| gradients are performed for a range of terminal fall speeds of dendrites and isometric crystals. The authors prescribe linear profiles of ZH for the dendrites and isometric crystals, with the resulting profiles and gradients of |VR| determined from a range of particle fall speeds. Both the observed ZH and |VR| gradients are reproduced by the calculations for a large range of fall speeds. However, more observational data are needed to fully constrain these calculations and reject or support explanations for this signature.

Corresponding author address: Robert S. Schrom, The Pennsylvania State University, Department of Meteorology, 603 Walker Building, University Park, PA 16802. E-mail: rss5116@psu.edu

Abstract

To better connect radar observations to microphysical processes, the authors analyze concurrent polarimetric radar observations at vertical incidence and roughly side incidence during the Front Range Orographic Storms (FROST) project. Data from three events show signatures of riming, aggregation, and dendritic growth. Riming and the growth of graupel are suggested by negative differential reflectivity ZDR and vertically pointing Doppler velocity magnitude |VR| > 2.0 m s−1; aggregation is indicated by maxima in the downward-relative gradient of radar reflectivity at horizontal polarization ZH below the −15°C isotherm and positive downward-relative gradients in |VR| when averaged over time. A signature of positive downward-relative gradients in ZH, negative downward-relative gradients in |VR|, and maxima in ZDR is observed near −15°C during all three events. This signature may be indicative of dendritic growth; preexisting, thick platelike crystals fall faster and grow slower than dendrites, allowing for |VR| to shift toward the slower-falling, rapidly growing dendrites. To test this hypothesis, simplified calculations of the ZH and |VR| gradients are performed for a range of terminal fall speeds of dendrites and isometric crystals. The authors prescribe linear profiles of ZH for the dendrites and isometric crystals, with the resulting profiles and gradients of |VR| determined from a range of particle fall speeds. Both the observed ZH and |VR| gradients are reproduced by the calculations for a large range of fall speeds. However, more observational data are needed to fully constrain these calculations and reject or support explanations for this signature.

Corresponding author address: Robert S. Schrom, The Pennsylvania State University, Department of Meteorology, 603 Walker Building, University Park, PA 16802. E-mail: rss5116@psu.edu
Save