• Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMC’s mesoscale eta model. Preprints. 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 30–31.

  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, doi:10.1175/WAF-D-15-0136.1.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485508, doi:10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation type. Wea. Forecasting, 15, 583592, doi:10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, J. M., and Coauthors, 2011: Improvement and testing of WRF physics options for application to Rapid Refresh and High Resolution Rapid Refresh. Preprints, 14th Conf. on Mesoscale Processes/15th Conf. on Aviation, Range, and Aerospace Meteorology, Los Angeles, CA, Amer. Meteor. Soc., 5.5. [Available online at https://ams.confex.com/ams/14Meso15ARAM/webprogram/Paper191234.html.]

  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2003: Urban modification of freezing-rain events. J. Appl. Meteor., 42, 863870, doi:10.1175/1520-0450(2003)042<0863:UMOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chenard, M., P. N. Schumacher, and H. D. Reeves, 2015: Determining precipitation type from maximum temperature in the lower atmosphere. Proc. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 6B.2. [Available online at https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273342.html.]

  • Cortinas, J. V., Jr., 2000: A climatology of freezing rain in the Great Lakes region of North America. Mon. Wea. Rev., 128, 35743588, doi:10.1175/1520-0493(2001)129<3574:ACOFRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–1990. Wea. Forecasting, 19, 377390, doi:10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crawford, R. W., and R. E. Stewart, 1995: Precipitation type characteristics at the surface in winter storms. Cold Reg. Sci. Technol., 23, 215229, doi:10.1016/0165-232X(94)00014-O.

    • Search Google Scholar
    • Export Citation
  • Czys, R., R. Scott, K. C. Tang, R. W. Przybylinski, and M. E. Sabones, 1996: A physically based, nondimensional parameter for discriminating between freezing rain and ice pellets. Wea. Forecasting, 11, 591598, doi:10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, H. D. Reeves, V. Farmer, and L. P. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., H. Moser, D. Apps, and H. D. Reeves, 2015: Evaluation of precipitation type forecasts by three operational models. Wea. Forecasting, 30, 656667, doi:10.1175/WAF-D-14-00068.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, doi:10.1175/WAF-D-14-00056.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, doi:10.1175/WAF-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarized radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Manikin, G. S., 2005: An overview of precipitation type forecasting using NAM and SREF data. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 8A.6. [Available online at https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94838.htm.]

  • Manikin, G. S., K. F. Brill, and B. Ferrier, 2004: An Eta Model precipitation type mini-ensemble for winter weather forecasting. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 23.1. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_73517.htm.]

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, doi:10.1002/2015GL065733.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., D. M. Schultz, B. A. Colle, S. Ganetis, D. R. Novak, and M. Sienkiewicz, 2014: The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband. Bull. Amer. Meteor. Soc., 95, 18251834, doi:10.1175/BAMS-D-13-00258.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Preprints, Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227–230.

  • Rauber, R. M., L. S. Olthoff, and M. K. Ramamurthy, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, doi:10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2001: Further investigation of a physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 16, 185191, doi:10.1175/1520-0434(2001)016<0185:FIOAPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, doi:10.1175/MWR-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Source of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, doi:10.1175/WAF-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Robbins, C. C., and J. V. Cortinas Jr., 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 4765, doi:10.1175/1520-0434(2002)017<0047:LASEAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., H. D. Reeves, J. Krause, and H. Burcham, 2014: Discrimination between winter precipitation types based on explicit microphysical modeling of melting and refreezing in the polarimetric hydrometeor classification algorithm. Eighth European Conf. on Radar Meteorology, Garmisch-Partenkirchen, Germany, European Meteorological Society, MIC.P07. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/198_Ryzhkov.pdf.]

  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles a new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, doi:10.1175/JTECH-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, and D. R. Clabo, 2005: Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D radar. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95995.htm.]

  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Stark, D., B. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. M. Thériault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96, 623639, doi:10.1175/BAMS-D-14-00032.1.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508, doi:10.1175/2009JAS3224.1.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types and temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, doi:10.1175/2010JAMC2321.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2014: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, doi:10.1175/JAMC-D-14-0050.1.

    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., F. Fabry, and I. Zawadzki, 2015: Attempts to observe polarimetric signatures of riming in stratiform precipitation. Proc. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 6B.6. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper275246.html.]

  • Wandishin, M. S., M. E. Baldwin, S. L. Mullen, and J. V. Cortinas Jr., 2005: Short-range ensemble forecasts of precipitation type. Wea. Forecasting, 20, 609626, doi:10.1175/WAF871.1.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szrymer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053723, doi:10.1175/JAS3563.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1566 967 91
PDF Downloads 604 276 19

Discrimination between Winter Precipitation Types Based on Spectral-Bin Microphysical Modeling

Heather Dawn ReevesCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Heather Dawn Reeves in
Current site
Google Scholar
PubMed
Close
,
Alexander V. RyzhkovCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
, and
J. KrauseCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by J. Krause in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new approach for distinguishing precipitation types at the surface, the spectral bin classifier (SBC), is presented. This algorithm diagnoses six categories of precipitation: rain (RA), snow (SN), a rain–snow mix (RASN), freezing rain (FZRA), ice pellets (PL), and a freezing rain–ice pellet mix (FZRAPL). It works by calculating the liquid-water fraction fw for a spectrum of falling hydrometeors given a prescribed temperature T and relative humidity profile. Demonstrations of the SBC output show that it provides reasonable estimates of fw of various-sized hydrometeors for the different categories of precipitation. The SBC also faithfully represents the horizontal distribution of precipitation type inasmuch as the model analyses and surface observations are consistent with each other. When applied to a collection of observed soundings associated with RA, SN, FZRA, and PL, the classifier has probabilities of detection (PODs) that range from 62.4% to 98.3%. The PODs do decrease when the effects of model uncertainty are accounted for. This decrease is modest for RA, SN, and PL but is large for FZRA as a result of the fact that this form of precipitation is very sensitive to small changes in the thermal profile. The effects of the choice of the degree of riming above the melting layer, the drop size distribution, and the assumed temperature at which ice nucleates are also examined. Recommendations on how to mitigate all forms of uncertainty are discussed. These include the use of dual-polarized radar observations, incorporating output from the microphysical parameterization scheme, and the use of ensemble model forecasts.

Corresponding author address: Heather Dawn Reeves, NOAA/National Severe Storms Laboratory, Ste. 2401, 120 David L. Boren Blvd., Norman, OK 73072-7319. E-mail: heather.reeves@noaa.gov

Abstract

A new approach for distinguishing precipitation types at the surface, the spectral bin classifier (SBC), is presented. This algorithm diagnoses six categories of precipitation: rain (RA), snow (SN), a rain–snow mix (RASN), freezing rain (FZRA), ice pellets (PL), and a freezing rain–ice pellet mix (FZRAPL). It works by calculating the liquid-water fraction fw for a spectrum of falling hydrometeors given a prescribed temperature T and relative humidity profile. Demonstrations of the SBC output show that it provides reasonable estimates of fw of various-sized hydrometeors for the different categories of precipitation. The SBC also faithfully represents the horizontal distribution of precipitation type inasmuch as the model analyses and surface observations are consistent with each other. When applied to a collection of observed soundings associated with RA, SN, FZRA, and PL, the classifier has probabilities of detection (PODs) that range from 62.4% to 98.3%. The PODs do decrease when the effects of model uncertainty are accounted for. This decrease is modest for RA, SN, and PL but is large for FZRA as a result of the fact that this form of precipitation is very sensitive to small changes in the thermal profile. The effects of the choice of the degree of riming above the melting layer, the drop size distribution, and the assumed temperature at which ice nucleates are also examined. Recommendations on how to mitigate all forms of uncertainty are discussed. These include the use of dual-polarized radar observations, incorporating output from the microphysical parameterization scheme, and the use of ensemble model forecasts.

Corresponding author address: Heather Dawn Reeves, NOAA/National Severe Storms Laboratory, Ste. 2401, 120 David L. Boren Blvd., Norman, OK 73072-7319. E-mail: heather.reeves@noaa.gov
Save