• Austin, R. T., and G. L. Stephens, 2001: Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation. J. Geophys. Res., 106, 28 23328 242, doi:10.1029/2000JD000293.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Biondini, R., 1976: Cloud motion and rainfall statistics. J. Appl. Meteor., 15, 205224, doi:10.1175/1520-0450(1976)015<0205:CMARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 41324154, doi:10.1002/2015JD023161.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., G. L. Stephens, and M. D. Lebsock, 2013: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos., 118, 12 12013 131, doi:10.1002/2013JD020224.

    • Search Google Scholar
    • Export Citation
  • Dekking, F. M., C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, 2005: A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer, 488 pp.

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, doi:10.1029/2009GL040394.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hogan, R., and A. Battaglia, 2008: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65, 36363651, doi:10.1175/2008JAS2643.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and C.-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105, 964980, doi:10.1175/1520-0493(1977)105<0964:RCOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, doi:10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, doi:10.1175/BAMS-D-12-00227.1.

    • Search Google Scholar
    • Export Citation
  • Kedem, B., and L. Chiu, 1987: On the lognormality of rain rate. Proc. Natl. Acad. Sci. USA, 84, 901905, doi:10.1073/pnas.84.4.901.

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 227, doi:10.1109/36.124212.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res. Atmos., 119, 89628979, doi:10.1002/2014JD021568.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., T. S. L’Ecuyer, and G. L. Stephens, 2011: Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J. Appl. Meteor. Climatol., 50, 419432, doi:10.1175/2010JAMC2494.1.

    • Search Google Scholar
    • Export Citation
  • López, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105, 865872, doi:10.1175/1520-0493(1977)105<0865:TLDACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, doi:10.1002/2013JD021374.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Marchant, B., S. Platnick, K. Meyer, G. T. Arnold, and J. Riedi, 2016: MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. Atmos. Meas. Tech., 8, 15871599, doi:10.5194/amt-9-1587-2016.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., and D. Chung, 2014: Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 44394460, doi:10.1175/JAS-D-13-0306.1.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, doi:10.1175/2011MWR3599.1.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res., 116, D24206, doi:10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Pal, N., C. Jin, and W. K. Lim, 2006: Handbook of Exponential and Related Distributions for Engineers and Scientists. Chapman and Hall/CRC, 339 pp.

  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding—Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 256 pp., doi:10.1142/9789812813718.

  • Rosenkranz, P. W., 2015: A model for the complex dielectric constant of supercooled liquid water at microwave frequencies. IEEE Trans. Geosci. Remote Sens., 53, 13871393, doi:10.1109/TGRS.2014.2339015.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Seethala, C., and Á. Horváth, 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. P. Khain, 2010: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141, doi:10.1175/2009JAS3283.1.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. J. Wiley and Sons, 470 pp.

  • van Zanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Wood, N., 2008: Level 2B radar-visible optical depth cloud water content (2B-CWC-RVOD) process description document. NASA Tech. Rep., 26 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RVOD_PDICD.P_R04.20081023.pdf.]

  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, doi:10.1029/2011JD016216.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. S. Ackerman, G. Feingold, S. Platnick, R. Pincus, and H. Xue, 2012: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res., 117, D19208, doi:10.1029/2012JD017655.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 574 183 18
PDF Downloads 545 182 10

Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS

Jussi LeinonenJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Jussi Leinonen in
Current site
Google Scholar
PubMed
Close
,
Matthew D. LebsockJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Matthew D. Lebsock in
Current site
Google Scholar
PubMed
Close
,
Graeme L. StephensJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
, and
Kentaroh SuzukiAtmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Kentaroh Suzuki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.

Corresponding author address: Jussi S. Leinonen, MS 233-300, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: jussi.s.leinonen@jpl.nasa.gov

Abstract

A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.

Corresponding author address: Jussi S. Leinonen, MS 233-300, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: jussi.s.leinonen@jpl.nasa.gov
Save