• Andreas, E. L, 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11 42911 441, doi:10.1029/92JC00876.

  • Andreas, E. L, 2002a: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3, 417432, doi:10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2002b: A review of the sea spray generation function for the open ocean. Atmosphere–Ocean Interactions, Vol. 1, W. Perrie, Ed., WIT Press, 1–46.

  • Andreas, E. L, 2005: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75, 323345, doi:10.1016/j.atmosres.2005.02.001.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and S. Wang, 2007: Predicting significant wave height off the northeast coast of the United States. Ocean Eng., 34, 13281335, doi:10.1016/j.oceaneng.2006.08.004.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, doi:10.1007/BF00712389.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. F. Jones, and C. W. Fairall, 2010: Production velocity of sea spray droplets. J. Geophys. Res., 115, C12065, doi:10.1029/2010JC006458.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, doi:10.1002/qj.2424.

    • Search Google Scholar
    • Export Citation
  • Asplin, M. G., R. Galley, D. G. Barber, and S. Prinsenberg, 2012: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. J. Geophys. Res., 117, C06025, doi:10.1029/2011JC007221.

    • Search Google Scholar
    • Export Citation
  • Brocchini, M., and D. H. Peregrine, 2002: The dynamics of strong turbulence at free surfaces. Part 1. Description. Interaction of Strong Turbulence with Free Surfaces, M. Brocchini, D. H. Peregrine, and P. L.-F. Liu, Eds., Advances in Coastal and Ocean Engineering, Vol. 8, World Scientific, 1–41.

  • Cipriano, R. J., E. C. Monahan, P. A. Bowyer, and D. K. Woolf, 1987: Marine condensation nucleus generation inferred from whitecap simulation tank results. J. Geophys. Res., 92, 65696576, doi:10.1029/JC092iC06p06569.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, G., F. P. Neele, M. Hill, M. H. Smith, and E. Vignati, 2000: Production of sea spray aerosol in the surf zone. J. Geophys. Res., 105, 29 39729 409, doi:10.1029/2000JD900549.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, G., E. L Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, 2011: Production flux of sea spray aerosol. Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

    • Search Google Scholar
    • Export Citation
  • DMT, 2009: Data analysis user’s guide—Chapter II: Single particle imaging. DOC-0223, Rev. A, Droplet Measurement Technologies, Inc., 34 pp. [Available online at http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data%20Analysis%20Guide/DOC-0223%20Rev%20A%20Data%20Analysis%20Guide%20Ch%202.pdf.]

  • DMT, 2013: Cloud imaging probe (CIP). Manual DOC-0028, Rev. L-3, Droplet Measurement Technologies, Inc., 66 pp. [Available online at http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Hardware%20Manuals/DOC-0028%20CIP%20Manual.pdf.]

  • Fairall, C. W., and S. E. Larsen, 1984: Dry deposition, surface production and dynamics of aerosols in the marine boundary layer. Atmos. Environ., 18, 6977, doi:10.1016/0004-6981(84)90229-4.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Gerwick, B. C., Jr., 2007: Construction of Marine and Offshore Structures. CRC Press, 813 pp.

  • Hoppel, W. A., P. F. Caffrey, and G. M. Frick, 2005: Particle deposition on water: Surface source versus upwind source. J. Geophys. Res., 110, D10206, doi:10.1029/2004JD005148.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., and J. C. Weil, 1992: Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Meteor., 59, 279296, doi:10.1007/BF00119817.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., and J. C. Weil, 1994: How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes. J. Atmos. Oceanic Technol., 11, 10181025, doi:10.1175/1520-0426(1994)011<1018:HFIFET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-I., G. Katul, and T.-W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765772, doi:10.1016/S0309-1708(99)00042-1.

    • Search Google Scholar
    • Export Citation
  • Itagaki, K., 1984: Icing rate on stationary structures under marine conditions. Cold Regions Research and Engineering Laboratory Rep. 8412, 9 pp. [Available online at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA145795.]

  • Jones, K. F., and E. L Andreas, 2009: Sea spray icing of drilling and production platforms. ERDC/Cold Regions Research and Engineering Laboratory Tech. Rep. TR-09-3, 54 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a496676.pdf.]

  • Jones, K. F., and E. L Andreas, 2012: Sea spray concentrations and the icing of fixed offshore structures. Quart. J. Roy. Meteor. Soc., 138, 131144, doi:10.1002/qj.897.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kepert, J., C. Fairall, and J.-W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 363–409.

  • Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503523, doi:10.1023/B:BOUN.0000030653.71031.96.

    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., and S. E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review. Amer. Geophys. Union, 413 pp.

  • Miller, M. A., and C. W. Fairall, 1988: A new parameterization of spray droplet production by oceanic whitecaps. Preprints, Seventh Conf. on Ocean–Atmosphere Interaction, Anaheim, CA, Amer. Meteor. Soc., 174177.

  • Minsk, L. D., 1984a: Ice observation program on the semisubmersible drilling vessel SEDCO 708. Cold Regions Research and Engineering Laboratory Special Rep. 842, 14 pp. [Available online at http://acwc.sdp.sirsi.net/client/search/asset/1010580.]

  • Minsk, L. D., 1984b: Assessment of ice accretion on offshore structures. Cold Regions Research and Engineering Laboratory Special Rep. 844, 12 pp [Available online at http://acwc.sdp.sirsi.net/client/search/asset/1011884.]

  • Monahan, E. C., and I. O’Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and M. Lu, 1990: Acoustically relevant bubble assemblages and their dependence on meteorological parameters. IEEE J. Oceanic Eng., 15, 340349, doi:10.1109/48.103530.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., C. W. Fairall, K. L. Davidson, and P. J. Boyle, 1983: Observed inter-relations between 10m winds, ocean whitecaps and marine aerosols. Quart. J. Roy. Meteor. Soc., 109, 379392, doi:10.1002/qj.49710946010.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps and Their Role in Air–Sea Exchange Processes, E. C. Monahan and G. Mac Niocaill, Eds., D. Reidel, 167–174.

  • Moore, D. J., and B. J. Mason, 1954: The concentration, size distribution and production rate of large salt nuclei over the oceans. Quart. J. Roy. Meteor. Soc., 80, 583590, doi:10.1002/qj.49708034607.

    • Search Google Scholar
    • Export Citation
  • Muzik, I., and A. Kirby, 1992: Spray overtopping rates for Tarsiut Island: Model and field study results. Can. J. Civ. Eng., 19, 469477, doi:10.1139/l92-057.

    • Search Google Scholar
    • Export Citation
  • Nauman, J. W., 1984: Superstructure icing observations on the semisubmersible Ocean Bounty in lower Cook Inlet, Alaska. Proc. Second Int. Workshop on Atmospheric Icing of Structures, Trondheim, Norway, IWAIS, 7179.

  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

  • Peregrine, D. H., 1983: Breaking waves on beaches. Annu. Rev. Fluid Mech., 15, 149178, doi:10.1146/annurev.fl.15.010183.001053.

  • Perrie, W., and Coauthors, 2012: Selected topics in Arctic atmosphere and climate. Climatic Change, 115, 3558, doi:10.1007/s10584-012-0493-6.

    • Search Google Scholar
    • Export Citation
  • Piazzola, J., G. Tedeschi, and A. Demoisson, 2015: A model for the transport of sea-spray aerosols in the coastal zone. Bound.-Layer Meteor., 155, 329350, doi:10.1007/s10546-014-9994-3.

    • Search Google Scholar
    • Export Citation
  • Rouault, M. P., P. G. Mestayer, and R. Schiestel, 1991: A model of evaporating spray droplet dispersion. J. Geophys. Res., 96, 71817200, doi:10.1029/90JC02569.

    • Search Google Scholar
    • Export Citation
  • Smith, M. H., and N. M. Harrison, 1998: The sea spray generation function. J. Aerosol Sci., 29 (Suppl. 1), S189S190, doi:10.1016/S0021-8502(98)00280-8.

    • Search Google Scholar
    • Export Citation
  • Smith, M. H., P. M. Park, and I. E. Consterdine, 1993: Marine aerosol concentrations and estimated fluxes over the sea. Quart. J. Roy. Meteor. Soc., 119, 809824, doi:10.1002/qj.49711951211.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., A. Fujimura, and S. Matt, 2012: Air–sea interface in hurricane conditions. J. Geophys. Res., 117, C00J34, doi:10.1029/2011JC007760.

    • Search Google Scholar
    • Export Citation
  • van Eijk, A. M. J., J. T. Kusmierczyk-Michulec, M. J. Francius, G. Tedeschi, J. Piazolla, D. L. Merritt, and J. D. Fontana, 2011: Sea-spray aerosol particles generated in the surf zone. J. Geophys. Res., 116, D19210, doi:10.1029/2011JD015602.

    • Search Google Scholar
    • Export Citation
  • Vignati, E., G. de Leeuw, and R. Berkowicz, 2001: Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer. J. Geophys. Res., 106, 20 22520 338, doi:10.1029/2000JD000025.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2015: Computing the flux footprint. Bound.-Layer Meteor., 156, 113, doi:10.1007/s10546-015-0017-9.

  • Woolf, D. K., P. A. Bowyer, and E. C. Monahan, 1987: Discriminating between the film drops and jet drops produced by a simulated whitecap. J. Geophys. Res., 92, 51425150, doi:10.1029/JC092iC05p05142.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1979: Oceanic whitecaps and sea state. J. Phys. Oceanogr., 9, 10641068, doi:10.1175/1520-0485(1979)009<1064:OWASS>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 517 489 3
PDF Downloads 59 46 1

Sea Spray Generation at a Rocky Shoreline

View More View Less
  • 1 Northwest Research Associates, Inc., Lebanon, New Hampshire
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

With sea ice in the Arctic continuing to shrink, the Arctic Ocean and the surrounding marginal seas will become more like the ocean at lower latitudes. In particular, with more open water, air–sea exchange will be more intense and storms will be stronger and more frequent. The longer fetches over open water and the more energetic storms will combine to produce higher waves and more sea spray. Offshore structures—such as oil drilling, exploration, and production platforms—will face increased hazards from freezing sea spray. On the basis of sea spray observations made with a cloud-imaging probe at Mount Desert Rock (an island off the coast of Maine), the spray that artificial islands built in the Arctic might experience is quantified. Mount Desert Rock is small, low, and unvegetated and has an abrupt, rocky shoreline like these artificial islands might have. Many of the observations were at air temperatures below freezing. This paper reports the near-surface spray concentration and the rate of spray production at this rocky shoreline for spray droplets with radii from 6.25 to 143.75 μm and for wind speeds from 5 to 17 m s−1. Spray concentration increases as the cube of the wind speed, but the shape of the concentration spectrum with respect to radius does not change with wind speed. Both near-surface spray concentration and the spray-production rate are three orders of magnitude higher at this rocky shoreline than over the open ocean because of the high energy and resulting continuous white water in the surf zone.

Deceased.

Editor’s Note: We are sad to report that the author of this paper, Dr. Andreas, passed away while his manuscript was in the initial review stage. Revisions could not easily be made to the originally submitted manuscript. The three anonymous reviewers, the editor (Todd Sikora), and the editor in chief (David Kristovich) unanimously agreed that, given the importance of the submitted material and the lack of serious concerns with it, the originally submitted manuscript be accepted without revision. We acknowledge Dr. Joan Oltman-Shay for shepherding Dr. Andreas’s manuscript through the publication process after his death.

Corresponding author address: c/o Dr. Joan Oltman-Shay, NorthWest Research Associates, 4118 148th Ave. NE, Redmond, WA 98052. E-mail: j.oltman.shay@nwra.com

Abstract

With sea ice in the Arctic continuing to shrink, the Arctic Ocean and the surrounding marginal seas will become more like the ocean at lower latitudes. In particular, with more open water, air–sea exchange will be more intense and storms will be stronger and more frequent. The longer fetches over open water and the more energetic storms will combine to produce higher waves and more sea spray. Offshore structures—such as oil drilling, exploration, and production platforms—will face increased hazards from freezing sea spray. On the basis of sea spray observations made with a cloud-imaging probe at Mount Desert Rock (an island off the coast of Maine), the spray that artificial islands built in the Arctic might experience is quantified. Mount Desert Rock is small, low, and unvegetated and has an abrupt, rocky shoreline like these artificial islands might have. Many of the observations were at air temperatures below freezing. This paper reports the near-surface spray concentration and the rate of spray production at this rocky shoreline for spray droplets with radii from 6.25 to 143.75 μm and for wind speeds from 5 to 17 m s−1. Spray concentration increases as the cube of the wind speed, but the shape of the concentration spectrum with respect to radius does not change with wind speed. Both near-surface spray concentration and the spray-production rate are three orders of magnitude higher at this rocky shoreline than over the open ocean because of the high energy and resulting continuous white water in the surf zone.

Deceased.

Editor’s Note: We are sad to report that the author of this paper, Dr. Andreas, passed away while his manuscript was in the initial review stage. Revisions could not easily be made to the originally submitted manuscript. The three anonymous reviewers, the editor (Todd Sikora), and the editor in chief (David Kristovich) unanimously agreed that, given the importance of the submitted material and the lack of serious concerns with it, the originally submitted manuscript be accepted without revision. We acknowledge Dr. Joan Oltman-Shay for shepherding Dr. Andreas’s manuscript through the publication process after his death.

Corresponding author address: c/o Dr. Joan Oltman-Shay, NorthWest Research Associates, 4118 148th Ave. NE, Redmond, WA 98052. E-mail: j.oltman.shay@nwra.com
Save