• Bedka, K. M., 2011: Overshooting cloud top detections using MSG SEVIRI infrared brightness temperatures and their relationship to severe weather over Europe. Atmos. Res., 99, 175189, doi:10.1016/j.atmosres.2010.10.001.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. Brunner, and W. Feltz, 2011: Overshooting top and enhanced-V signature detection. NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 53 pp. [Available online at http://www.goes-r.gov/products/ATBDs/option2/Aviation_OvershootingTop_v1_no_color.pdf.]

  • Bedka, K. M., R. Dworak, J. Brunner, and W. Feltz, 2012: Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat Cloud Profiling Radar observations. J. Appl. Meteor. Climatol., 51, 18111822, doi:10.1175/JAMC-D-11-0131.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. Wang, R. Rogers, L. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. MacKenzie Jr., K. M. Bedka, and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, doi:10.2151/jmsj.2016-009.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, doi:10.1175/WAF1022.1.

    • Search Google Scholar
    • Export Citation
  • CNN, 2013: Lethal weather on world’s most dangerous lake. [Available online at http://www.cnn.com/2013/01/17/world/africa/lake-victoria-weather-deaths/.]

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dworak, R., K. M. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, doi:10.1175/WAF-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2012: The GOES-R Proving Ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, doi:10.1175/BAMS-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, S. M., K. M. Bedka, and C. S. Velden, 2016: A method for calculating the height of overshooting convective cloud tops using satellite-based IR imager and CloudSat cloud profiling radar observations. J. Appl. Meteor. Climatol., 55, 479491, doi:10.1175/JAMC-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, doi:10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Khlopenkov, K. V., and A. P. Trishchenko, 2008: Implementation and evaluation of concurrent gradient search method for reprojection of MODIS level 1B imagery. IEEE Trans. Geosci. Remote Sens., 46, 20162027, doi:10.1109/TGRS.2008.916633.

    • Search Google Scholar
    • Export Citation
  • Khlopenkov, K. V., and A. P. Trishchenko, 2010: Achieving subpixel georeferencing accuracy in the Canadian AVHRR Processing System. IEEE Trans. Geosci. Remote Sens., 48, 21502161, doi:10.1109/TGRS.2009.2034974.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402, 399401, doi:10.1038/46521.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, doi:10.1002/2015GL063776.

    • Search Google Scholar
    • Export Citation
  • Merino, A., L. Lopez, J. L. Sanchez, E. Garcia-Ortega, E. Cattani, and V. Levizzani, 2014: Daytime identification of summer hailstorm cells from MSG data. Nat. Hazards Earth Syst. Sci., 14, 10171033, doi:10.5194/nhess-14-1017-2014.

    • Search Google Scholar
    • Export Citation
  • Mikuš, P., and N. Strelec Mahović, 2013: Satellite-based overshooting top detection methods and the analysis of correlated weather conditions. Atmos. Res., 123, 268280, doi:10.1016/j.atmosres.2012.09.001.

    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, K. S. Griffin, and C. M. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, doi:10.1175/JAMC-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300, doi:10.1175/1520-0450(1981)020<0288:ROSBTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Proud, S. R., 2015: Analysis of overshooting top detections by Meteosat Second Generation: A 5-year dataset. Quart. J. Roy. Meteor. Soc., 141, 909915, doi:10.1002/qj.2410.

    • Search Google Scholar
    • Export Citation
  • Punge, H. J., A. Werner, K. M. Bedka, M. Kunz, and M. Puskeiler, 2014: A new physically based stochastic event catalog for hail in Europe. Nat. Hazards Earth Syst. Sci., 73, 16251645, doi:10.1007/s11069-014-1161-0.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 1980: Observations of damaging hailstorms from geosynchronous satellite digital data. Mon. Wea. Rev., 108, 337348, doi:10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and C. Pearl, 2007: 22-year survey of tropical convection penetrating into the lower stratosphere. Geophys. Res. Lett., 34, L04803, doi:10.1029/2006GL028635.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F., and Coauthors, 2011: Enhancing safety of navigation and efficient exploitation of natural resources over Lake Victoria and its basin by strengthening meteorological services on the lake. North Carolina State University Climate Modeling Laboratory Final Rep., 104 pp. [Available online at http://climlab02.meas.ncsu.edu/HYVIC/Final_Report_LVBC.pdf.]

  • Setvák, M., and Coauthors, 2010: Cold-ring-shaped cloud top features atop convective storms. Atmos. Res., 97, 8096, doi:10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. Šťástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, doi:10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2001: Climate and ozone response to increased stratospheric water vapour. Geophys. Res. Lett., 28, 15511554, doi:10.1029/1999GL011197.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, S. I. Seneviratne, K. M. Bedka, S. Lhermitte, and N. van Leipzig, 2016: Climate change intensifies hazardous storms over Lake Victoria. Nature Commun., in press.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Z. J. Luo, and X. Huang, 2011: Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations: Method and application to convection study. J. Geophys. Res., 116, D17201, doi:10.1029/2011JD016097.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., F. A. Furuzawa, A. Higuchi, and K. Nakamura, 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21, 40114028, doi:10.1175/2007JCLI2079.1.

    • Search Google Scholar
    • Export Citation
  • Young, A. H., J. J. Bates, and J. A. Curry, 2012: Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS. J. Geophys. Res., 117, D13205, doi:10.1029/2011JD016749.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 382 273 22
PDF Downloads 337 246 20

A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • | 2 Science Systems and Applications, Inc., Hampton, Virginia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Deep convective updrafts often penetrate through the surrounding cirrus anvil and into the lower stratosphere. Cross-tropopause transport of ice, water vapor, and chemicals occurs within these “overshooting tops” (OTs) along with a variety of hazardous weather conditions. OTs are readily apparent in satellite imagery, and, given the importance of OTs for weather and climate, a number of automated satellite-based detection methods have been developed. Some of these methods have proven to be relatively reliable, and their products are used in diverse Earth science applications. Nevertheless, analysis of these methods and feedback from product users indicate that use of fixed infrared temperature–based detection criteria often induces biases that can limit their utility for weather and climate analysis. This paper describes a new multispectral OT detection approach that improves upon those previously developed by minimizing use of fixed criteria and incorporating pattern recognition analyses to arrive at an OT probability product. The product is developed and validated using OT and non-OT anvil regions identified by a human within MODIS imagery. The product offered high skill for discriminating between OTs and anvils and matched 69% of human OT identifications for a particular probability threshold with a false-detection rate of 18%, outperforming previously existing methods. The false-detection rate drops to 1% when OT-induced texture detected within visible imagery is used to constrain the IR-based OT probability product. The OT probability product is also shown to improve severe-storm detection over the United States by 20% relative to the best existing method.

Supplemental information related to this paper is available at the Journals Online website.

Publisher’s Note: This article was revised on 28 September 2016 to properly display and more fully enable access to the supplemental material.

Corresponding author address: Kristopher Bedka, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681. E-mail: kristopher.m.bedka@nasa.gov

Abstract

Deep convective updrafts often penetrate through the surrounding cirrus anvil and into the lower stratosphere. Cross-tropopause transport of ice, water vapor, and chemicals occurs within these “overshooting tops” (OTs) along with a variety of hazardous weather conditions. OTs are readily apparent in satellite imagery, and, given the importance of OTs for weather and climate, a number of automated satellite-based detection methods have been developed. Some of these methods have proven to be relatively reliable, and their products are used in diverse Earth science applications. Nevertheless, analysis of these methods and feedback from product users indicate that use of fixed infrared temperature–based detection criteria often induces biases that can limit their utility for weather and climate analysis. This paper describes a new multispectral OT detection approach that improves upon those previously developed by minimizing use of fixed criteria and incorporating pattern recognition analyses to arrive at an OT probability product. The product is developed and validated using OT and non-OT anvil regions identified by a human within MODIS imagery. The product offered high skill for discriminating between OTs and anvils and matched 69% of human OT identifications for a particular probability threshold with a false-detection rate of 18%, outperforming previously existing methods. The false-detection rate drops to 1% when OT-induced texture detected within visible imagery is used to constrain the IR-based OT probability product. The OT probability product is also shown to improve severe-storm detection over the United States by 20% relative to the best existing method.

Supplemental information related to this paper is available at the Journals Online website.

Publisher’s Note: This article was revised on 28 September 2016 to properly display and more fully enable access to the supplemental material.

Corresponding author address: Kristopher Bedka, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681. E-mail: kristopher.m.bedka@nasa.gov
Save