• Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp. [Available online at http://docs.lib.noaa.gov/noaa_documents/OAR/NSSL/NOAA_TM_ERL_NSSL/ERL_NSSL_62.pdf.]

  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772, doi:10.1175/JAM2264.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. S. Velden, R. A. Petersen, W. F. Feltz, and J. R. Mecikalski, 2009: Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA wind profiler observations. J. Appl. Meteor. Climatol., 48, 15421561, doi:10.1175/2009JAMC1867.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., A. L. Pazmany, J. C. Galloway, and R. E. Mcintosh, 1995: Studies of the substructure of severe convective storms using a mobile 3-mm-wavelength Doppler radar. Bull. Amer. Meteor. Soc., 76, 21552169, doi:10.1175/1520-0477(1995)076<2155:SOTSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms. Bull. Amer. Meteor. Soc., 91, 579600, doi:10.1175/2009BAMS2914.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1977: Gust front evolution and tornado genesis as viewed by Doppler radar. J. Appl. Meteor., 16, 333338, doi:10.1175/1520-0450(1977)016<0333:GFEATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, doi:10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1981: Fine structure of the Del City-Edmond tornadic mesocirculation. Mon. Wea. Rev., 109, 635647, doi:10.1175/1520-0493(1981)109<0635:FOTDCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984a: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052, doi:10.1175/1520-0493(1984)112<1033:RBRDTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984b: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 22532269, doi:10.1175/1520-0493(1984)112<2253:VVGAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., R. P. Davies-Jones, and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45, 947963, doi:10.1175/1520-0469(1988)045<0947:SVEOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., J. M. Daniels, A. A. Bailey, and S. T. Wanzong, 2012: New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. J. Appl. Meteor. Climatol., 51, 21372151, doi:10.1175/JAMC-D-11-0234.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, doi:10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22, 669677, doi:10.1175/1520-0469(1965)022<0669:SIATUW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, doi:10.1175/WAF1022.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. Michael Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, doi:10.1175/WAF-D-13-00113.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, doi:10.1175/JAS-D-12-0166.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dance, S., E. Ebert, and D. Scurrah, 2010: Thunderstorm strike probability nowcasting. J. Atmos. Oceanic Technol., 27, 7993, doi:10.1175/2009JTECHA1279.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–222.

  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, doi:10.1175/MWR-D-13-00101.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1968: Present status of cloud velocity computations from ATS-1 and ATS-3. Ninth Plenary Meeting onSpace Research, Tokyo, Japan, COSPAR, 557–570.

  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 315, doi:10.1175/1520-0450-34.1.3.

    • Search Google Scholar
    • Export Citation
  • Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13, 10931104, doi:10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., S. Gu, X. Zhuang, and H. Luo, 2007: Automatic identification of storm cells using Doppler radars. Acta Meteor. Sin., 21, 353365.

    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., and L. F. Whitney Jr., 1971: Wind estimation from geostationary-satellite pictures. Mon. Wea. Rev., 99, 665672, doi:10.1175/1520-0493(1971)099<0665:WEFGP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., 1987: The dynamics of severe thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, doi:10.1146/annurev.fl.19.010187.002101.

  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and H. C. Morrison, 2015: On the mechanisms of rain formation in an idealized supercell storm. Mon. Wea. Rev., 143, 27542773, doi:10.1175/MWR-D-14-00402.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, doi:10.1175/2009JTECHA1257.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, doi:10.1175/WAF1009.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11, 166179, doi:10.1175/1520-0450(1972)011<0166:TSAMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 48994914, doi:10.1175/2008MWR2352.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. Leroy, and J. Walker, 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations with numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, doi:10.1175/JAMC-D-14-0129.1.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359361.

  • Peterson, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique collaboration in research, education and technology transfer. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96524.htm].

  • Potvin, C. K., D. Betten, L. J. Wicker, K. L. Elmore, and M. I. Biggerstaff, 2012a: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 34873494, doi:10.1175/MWR-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., L. J. Wicker, and A. Shapiro, 2012b: Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Oceanic Technol., 29, 10091025, doi:10.1175/JTECH-D-11-00177.1.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., S. F. Corfidi, J. C. Brunner, and C. E. Hane, 2004: Detecting winds aloft from water vapor satellite imagery in the vicinity of storms. Weather, 59, 251257, doi:10.1256/wea.182.03.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T., and Coauthors, 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, doi:10.1117/1.JRS.7.073462.

    • Search Google Scholar
    • Export Citation
  • Schmit, T., and Coauthors, 2015: Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, doi:10.1175/BAMS-D-13-00210.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., D. C. Hartung, W. F. Feltz, L. M. Cronce, and V. Lakshmanan, 2013: A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. J. Atmos. Oceanic Technol., 30, 510525, doi:10.1175/JTECH-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • SPC, 2015: SPC severe weather events archive. Storm Prediction Center, accessed 1 June–12 August 2015. [Available online at http://www.spc.noaa.gov/exper/archive/events/.]

  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, doi:10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126, 12021218, doi:10.1175/1520-0493(1998)126<1202:TIOMGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Walker, J. R., W. M. MacKenzie, Jr., J. R. Mecikalski, and C. P. Jewett, 2012: An enhanced geostationary satellite–based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 19311949, doi:10.1175/JAMC-D-11-0246.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Y. Feng, M. Chen, and R. D. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 16911714, doi:10.1175/2010WAF2222417.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar for estimating maximum hailstone size. J. Appl. Meteor., 30, 425431, doi:10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 108 10
PDF Downloads 125 81 7

Analysis of Mesoscale Atmospheric Flows above Mature Deep Convection Using Super Rapid Scan Geostationary Satellite Data

View More View Less
  • 1 Department of Atmospheric Sciences, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 Earth Systems Science Center, University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Super Rapid Scan Operations for the Geostationary Operational Environmental Satellite (GOES) R series (SRSOR) using GOES-14 have made experimentation with 1-min time-step data possible prior to the launch of the new satellite. A mesoscale atmospheric motion vector (mAMV) program is utilized in SRSOR with a Barnes analysis to produce objectively analyzed flow fields at the cloud tops of deep convection. Two nonsupercell and four supercell storm cases are analyzed. Data from the SRSOR mAMV analysis are compared with both multi-Doppler analyses when available and idealized convection cases within the Weather Research and Forecasting (WRF) Model framework. It is found that using SRSOR data provides several additional trackable targets to produce mAMVs in rapidly “bubbling” regions at the deep convective cloud-top level not previously available at lower temporal resolutions (<1 min). Results also show that supercell storm cases produce long-lived maxima in SRSOR cloud-top divergence (CTD) and “couplet” signatures in cloud-top vorticity (CTV), which when compared with idealized WRF Model simulations appear to form as a result of environmental horizontal vorticity tilting. Nonsupercell convection in contrast produced weaker, short-lived CTD signatures and no “CTV couplet” signatures. These case study results suggest that with SRSOR data it might be possible to uniquely identify supercells using only mAMV-derived flow fields.

Corresponding author address: Jason Apke, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: jason.apke@gmail.com

Abstract

Super Rapid Scan Operations for the Geostationary Operational Environmental Satellite (GOES) R series (SRSOR) using GOES-14 have made experimentation with 1-min time-step data possible prior to the launch of the new satellite. A mesoscale atmospheric motion vector (mAMV) program is utilized in SRSOR with a Barnes analysis to produce objectively analyzed flow fields at the cloud tops of deep convection. Two nonsupercell and four supercell storm cases are analyzed. Data from the SRSOR mAMV analysis are compared with both multi-Doppler analyses when available and idealized convection cases within the Weather Research and Forecasting (WRF) Model framework. It is found that using SRSOR data provides several additional trackable targets to produce mAMVs in rapidly “bubbling” regions at the deep convective cloud-top level not previously available at lower temporal resolutions (<1 min). Results also show that supercell storm cases produce long-lived maxima in SRSOR cloud-top divergence (CTD) and “couplet” signatures in cloud-top vorticity (CTV), which when compared with idealized WRF Model simulations appear to form as a result of environmental horizontal vorticity tilting. Nonsupercell convection in contrast produced weaker, short-lived CTD signatures and no “CTV couplet” signatures. These case study results suggest that with SRSOR data it might be possible to uniquely identify supercells using only mAMV-derived flow fields.

Corresponding author address: Jason Apke, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: jason.apke@gmail.com
Save