• Arritt, R. W., J. M. Wilczak, and G. S. Young, 1992: Observations and numerical modeling of an elevated mixed layer. Mon. Wea. Rev., 120, 28692880, doi:10.1175/1520-0493(1992)120<2869:OANMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79, 131175, doi:10.1007/BF00120078.

    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano, 2015: Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting Model at an urban coastal site in the north-east Iberian Peninsula. Bound.-Layer Meteor., 157, 265292, doi:10.1007/s10546-015-0056-2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1985: Late-morning jump in TKE in the mixed layer over a mountain basin. J. Atmos. Sci., 42, 407411, doi:10.1175/1520-0469(1985)042<0407:LMJITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and A. B. White, 2003: Mixing-height differences between land use types: Dependence on wind speed. J. Geophys. Res., 108, 4321, doi:10.1029/2002JD002748.

    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., T. M. Dunbar, E. G. Nemitz, C. R. Wood, M. W. Gallagher, F. Davies, E. O’Connor, and R. M. Harrison, 2011: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys., 11, 21112125, doi:10.5194/acp-11-2111-2011.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2011a: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart. J. Roy. Meteor. Soc., 137 (S1), 81100, doi:10.1002/qj.758.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., S. Pal, V. Wulfmeyer, A. M. Valdebenito, and G. Lammel, 2011b: A novel approach for the characterization of transport and optical properties of aerosol particles near sources Part I: Measurement of particle backscatter coefficient maps with a scanning UV lidar. Atmos. Environ., 45, 27952802, doi:10.1016/j.atmosenv.2011.02.061.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., V. Wulfmeyer, E. Hammann, S. Muppa, and S. Pal, 2015: Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar. Atmos. Chem. Phys., 15, 54855500, doi:10.5194/acp-15-5485-2015.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and S. E. Gryning, 1998: Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data. J. Appl. Meteor., 37, 255268, doi:10.1175/1520-0450(1998)037<0255:EOTEZD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumenthal, D. L., W. H. White, and T. B. Smith, 1978: Anatomy of a Los Angeles smog episode: Pollutant transport in the daytime sea breeze regime. Atmos. Environ., 12, 893907, doi:10.1016/0004-6981(78)90028-8.

    • Search Google Scholar
    • Export Citation
  • Boers, R., and E. W. Eloranta, 1986: Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Bound.-Layer Meteor., 34, 357375, doi:10.1007/BF00120988.

    • Search Google Scholar
    • Export Citation
  • Bradley, S., A. Strehz, and S. Emeis, 2015: Remote sensing winds in complex terrain—A review. Meteor. Z., 24, 547555, doi:10.1127/metz/2015/0640.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., A. C. M. Beljaars, and H. Hersbach, 2006: Errors in parameterizations of convective boundary layer turbulent moment mixing. Quart. J. Roy. Meteor. Soc., 132, 18591876, doi:10.1256/qj.05.182.

    • Search Google Scholar
    • Export Citation
  • Choi, W., I. C. Faloona, M. McKay, A. H. Goldstein, and B. Baker, 2011: Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX. Atmos. Chem. Phys., 11, 68376853, doi:10.5194/acp-11-6837-2011.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. J. De Wekker, and B. Snyder, Eds., 2013: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp., doi:10.1007/978-94-007-4098-3.

  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, doi:10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conrick, R., H. D. Reeves, and S. Zhong, 2015: The dependence of QPF on the choice of boundary- and surface-layer parameterization for a lake-effect snowstorm. J. Appl. Meteor. Climatol., 54, 11771190, doi:10.1175/JAMC-D-14-0291.1.

    • Search Google Scholar
    • Export Citation
  • Davis, K. J., D. H. Lenschow, S. P. Oncley, C. Kiemle, G. Ehret, A. Giez, and J. Mann, 1997: Role of entrainment in surface-atmosphere interactions over the boreal forest. J. Geophys. Res., 102, 29 21929 230, doi:10.1029/97JD02236.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., and M. Kossmann, 2015: Convective boundary layer heights over mountainous terrain—A review of concepts. Front. Earth Sci., 3, 77, doi:10.3389/feart.2015.00077.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., D. G. Steyn, and S. Nyeki, 2004: A comparison of aerosol layer- and convective boundary layer structure over a mountain range during STAAARTE ’97. Bound.-Layer Meteor., 113, 249271, doi:10.1023/B:BOUN.0000039371.41823.37.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., K. S. Godwin, G. D. Emmitt, and S. Greco, 2012: Airborne Doppler lidar measurements of valley flows in complex coastal terrain. J. Appl. Meteor. Climatol., 51, 15581574, doi:10.1175/JAMC-D-10-05034.1.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 36033622, doi:10.1175/2010MWR3318.1.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., B. Geerts, Q. Miao, and J. A. Zehnder, 2009: Boundary layer energy transport and cumulus development over a heated mountain: An observational study. Mon. Wea. Rev., 137, 447468, doi:10.1175/2008MWR2467.1.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., K. J. Davis, C. J. Senff, S. Ismail, E. V. Browell, D. R. Stauffer, and B. P. Reen, 2006: A case study on the effects of heterogeneous soil moisture on mesoscale boundary-layer structure in the southern Great Plains, U.S.A. Part I: Simple prognostic model. Bound.-Layer Meteor., 119, 195228, doi:10.1007/s10546-005-9024-6.

    • Search Google Scholar
    • Export Citation
  • Endo, S., T. Shinoda, T. Hiyama, H. Uyeda, K. Nakamura, H. Tanaka, and K. Tsuboki, 2008: Characteristics of vertical circulation in the convective boundary layer over the Huaihe River basin in China in the early summer of 2004. J. Appl. Meteor. Climatol., 47, 29112928, doi:10.1175/2008JAMC1769.1.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., R. Conzemius, and A. Shapiro, 2004: Nonstationarity of convective boundary layer growth in a heterogeneous stratified shear-free atmosphere. Preprints, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., 7.9. [Available online at https://ams.confex.com/ams/pdfpapers/78683.pdf.]

  • Fernando, H. J. S., and Coauthors, 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 19451967, doi:10.1175/BAMS-D-13-00131.1.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine boundary layer. Bound.-Layer Meteor., 83, 247284, doi:10.1023/A:1000258318944.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and L. Cornman, 1999: Coherent Doppler lidar signal spectrum with wind turbulence. Appl. Opt., 38, 74567466, doi:10.1364/AO.38.007456.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, doi:10.1029/2009JD012811.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, and J. H. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows? J. Atmos. Sci., 68, 619634, doi:10.1175/2010JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and Coauthors, 2015: The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci., 72, 693713, doi:10.1175/JAS-D-13-0384.1.

    • Search Google Scholar
    • Export Citation
  • Godwin, K. S., S. F. J. De Wekker, and G. D. Emmitt, 2012: Retrieving winds in the surface layer over land using an airborne Doppler lidar. J. Atmos. Oceanic Technol., 29, 487499, doi:10.1175/JTECH-D-11-00139.1.

    • Search Google Scholar
    • Export Citation
  • Gryning, S.-E., and E. Batchvarova, 1994: Parametrization of the depth of the entrainment zone above the daytime mixed layer. Quart. J. Roy. Meteor. Soc., 120, 4758, doi:10.1002/qj.49712051505.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2012: Evaluation of mixing-height retrievals from automated profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 4975, doi:10.1007/s10546-011-9643-z.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., H.-J. Binder, M. Kossmann, R. V. Ögtlin, U. Corsmeier, F. Fiedler, and H. Schlager, 1998: Temporal evolution and spatial variation of the boundary layer over complex terrain. Atmos. Environ., 32, 11791194, doi:10.1016/S1352-2310(97)00193-3.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2009: The impact of convergence zones on the initiation of deep convection: A case study from COPS. Atmos. Res., 93, 680694, doi:10.1016/j.atmosres.2009.02.010.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow, and S. P. Oncley, 1997: Estimation of boundary layer humidity fluxes and statistics from Airborne Differential Absorption Lidar (DIAL). J. Geophys. Res., 102, 29 18929 203, doi:10.1029/97JD01112.

    • Search Google Scholar
    • Export Citation
  • King, J. C., S. A. Argentini, and P. S. Anderson, 2006: Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J. Geophys. Res., 111, D02105, doi:10.1029/2005JD006130.

    • Search Google Scholar
    • Export Citation
  • Kossmann, M., R. Vögtlin, U. Corsmeier, B. Vogel, F. Fiedler, H.-J. Binder, N. Kalthoff, and F. Beyrich, 1998: Aspects of the convective boundary layer structure over complex terrain. Atmos. Environ., 32, 13231348, doi:10.1016/S1352-2310(97)00271-9.

    • Search Google Scholar
    • Export Citation
  • Lammert, A., and J. Bösenberg, 2006: Determination of the convective boundary layer height with laser remote sensing. Bound.-Layer Meteor., 119, 159170, doi:10.1007/s10546-005-9020-x.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and B. B. Stankov, 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43, 11981209, doi:10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lieman, R., and P. Alpert, 1993: Investigation of the planetary boundary layer height variations over complex terrain. Bound.-Layer Meteor., 62, 129142, doi:10.1007/BF00705550.

    • Search Google Scholar
    • Export Citation
  • Luo, T., R. Yuan, and Z. Wang, 2014: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmos. Meas. Tech., 7, 173182, doi:10.5194/amt-7-173-2014.

    • Search Google Scholar
    • Export Citation
  • Massey, J. D., W. J. Steenburgh, S. W. Hoch, and J. C. Knievel, 2014: Sensitivity of near-surface temperature forecasts to soil properties over a sparsely vegetated dryland region. J. Appl. Meteor. Climatol., 53, 19761995, doi:10.1175/JAMC-D-13-0362.1.

    • Search Google Scholar
    • Export Citation
  • McElroy, J. L., and T. B. Smith, 1991: Lidar descriptions of mixing-layer thickness characteristics in a complex terrain/coastal environment. J. Appl. Meteor., 30, 585597, doi:10.1175/1520-0450(1991)030<0585:LDOMLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., J. D. Spinhirne, S. H. Chou, and S. P. Palm, 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806821, doi:10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pal, S., 2016: On the factors governing water vapor turbulence profiles in the convective boundary layer over land: Concept and data analyses methodology using ground-based lidar measurements. Sci. Total Environ., 554–555, 1725, doi:10.1016/j.scitotenv.2016.02.147.

    • Search Google Scholar
    • Export Citation
  • Pal, S., and M. Haeffelin, 2015: Forcing mechanisms governing diurnal, seasonal, and interannual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris. J. Geophys. Res. Atmos., 120, 11 93611 956, doi:10.1002/2015JD023268.

    • Search Google Scholar
    • Export Citation
  • Pal, S., A. Behrendt, and V. Wulfmeyer, 2010: Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics. Ann. Geophys., 28, 825847, doi:10.5194/angeo-28-825-2010.

    • Search Google Scholar
    • Export Citation
  • Pal, S., and Coauthors, 2012: Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos. Environ., 63, 261275, doi:10.1016/j.atmosenv.2012.09.046.

    • Search Google Scholar
    • Export Citation
  • Pal, S., M. Haeffelin, and E. Batchvarova, 2013: Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements. J. Geophys. Res. Atmos., 118, 92779295, doi:10.1002/jgrd.50710.

    • Search Google Scholar
    • Export Citation
  • Pal, S., T. R. Lee, S. Phelps, and S. F. J. De Wekker, 2014: Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ., 496, 424434, doi:10.1016/j.scitotenv.2014.07.067.

    • Search Google Scholar
    • Export Citation
  • Pal, S., M. Lopez, M. Schmidt, M. Ramonet, F. Gibert, I. Xueref-Remy, and P. Ciais, 2015: Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement. J. Geophys. Res., 120, 623643, doi:10.1002/2014JD022322.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355361, doi:10.1007/BF02186086.

    • Search Google Scholar
    • Export Citation
  • Reen, B. P., D. R. Stauffer, K. J. Davis, and A. Desai, 2006: A case study on the effects of heterogeneous soil moisture on mesoscale boundary layer structure in the southern Great Plains, U.S.A. Part II: Mesoscale modeling. Bound.-Layer Meteor., 120, 275314, doi:10.1007/s10546-006-9056-6.

    • Search Google Scholar
    • Export Citation
  • Rieck, M., C. Hohenegger, and C. van Heerwaarden, 2014: The influence of land surface heterogeneities on cloud size development. Mon. Wea. Rev., 142, 38303846, doi:10.1175/MWR-D-13-00354.1.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., T. T. Warner, F. Chen, and E. G. Astling, 2002: Mechanisms for diurnal boundary layer circulations in the Great Basin Desert. Mon. Wea. Rev., 130, 921938, doi:10.1175/1520-0493(2002)130<0921:MFDBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Mejia, Z. M., and S. A. Papuga, 2014: Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resour. Res., 50, 306317, doi:10.1002/2013WR014135.

    • Search Google Scholar
    • Export Citation
  • Scarino, A. J., and Coauthors, 2014: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. Atmos. Chem. Phys., 14, 55475560, doi:10.5194/acp-14-5547-2014.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, doi:10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., S. F. J. De Wekker, M. Kossmann, and A. Martilli, 2013: Boundary layers and air quality in mountainous terrain. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 261–290.

  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic, 670 pp., doi:10.1007/978-94-009-3027-8.

  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 67, 1620, doi:10.1098/rspa.1938.0032.

  • Wakimoto, R. M., and J. L. McElroy, 1986: Lidar observation of elevated pollution layers over Los Angeles. J. Climate Appl. Meteor., 25, 15831599, doi:10.1175/1520-0450(1986)025<1583:LOOEPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Williams, C. A., and J. D. Albertson, 2004: Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna. Water Resour. Res., 40, W09302, doi:10.1029/2004WR003208.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can the water vapor Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically‐induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, and S. Zhang, 2013: Trends in planetary boundary layer height over Europe. J. Climate, 26, 10 07110 076, doi:10.1175/JCLI-D-13-00108.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 59 4
PDF Downloads 48 40 2

Investigation of the Spatial Variability of the Convective Boundary Layer Heights over an Isolated Mountain: Cases from the MATERHORN-2012 Experiment

View More View Less
  • 1 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
  • | 2 Simpson Weather Associates, Charlottesville, Virginia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Spatiotemporal variability in the convective boundary layer height zi over complex terrain is governed by numerous factors such as land surface processes, topography, and synoptic conditions. Observational datasets to evaluate weather forecast models that simulate this variability are sparse. This study aims to investigate the zi spatial variability (along a total leg length of 1800 km) around and over a steep isolated mountain (Granite Mountain) of horizontal and vertical dimensions of 8 and 0.9 km, respectively. An airborne Doppler lidar was deployed on seven flights during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) campaign conducted at Dugway Proving Ground (Utah) from 25 September to 24 October 2012. During the afternoon, an east–west zi gradient over the region with zi that was approximately 200 m higher on the eastern side than on the western side of Granite Mountain was observed. This gradient illustrates the impact of two different land surface properties on zi spatial variability, with a sparsely vegetated desert steppe region on the east and a dry, bare lake-bed desert with high subsurface soil moisture to the west of Granite Mountain. Additionally, the zi spatial variability was partly attributed to the impact of Granite Mountain on the downwind zi. Differences in zi were also observed by the radiosonde measurements in the afternoon but not in the morning as the zi variability in morning were modulated by the topography. The high-resolution lidar-derived zi measurements were used to estimate the entrainment zone thickness in the afternoon, with estimates ranging from 100 to 250 m.

Corresponding author address: Sandip Pal, Dept. of Environmental Sciences, P.O. Box 400123, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904-4123. E-mail: sp5hd@virginia.edu; pal_sandy2002@yahoo.co.uk

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Abstract

Spatiotemporal variability in the convective boundary layer height zi over complex terrain is governed by numerous factors such as land surface processes, topography, and synoptic conditions. Observational datasets to evaluate weather forecast models that simulate this variability are sparse. This study aims to investigate the zi spatial variability (along a total leg length of 1800 km) around and over a steep isolated mountain (Granite Mountain) of horizontal and vertical dimensions of 8 and 0.9 km, respectively. An airborne Doppler lidar was deployed on seven flights during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) campaign conducted at Dugway Proving Ground (Utah) from 25 September to 24 October 2012. During the afternoon, an east–west zi gradient over the region with zi that was approximately 200 m higher on the eastern side than on the western side of Granite Mountain was observed. This gradient illustrates the impact of two different land surface properties on zi spatial variability, with a sparsely vegetated desert steppe region on the east and a dry, bare lake-bed desert with high subsurface soil moisture to the west of Granite Mountain. Additionally, the zi spatial variability was partly attributed to the impact of Granite Mountain on the downwind zi. Differences in zi were also observed by the radiosonde measurements in the afternoon but not in the morning as the zi variability in morning were modulated by the topography. The high-resolution lidar-derived zi measurements were used to estimate the entrainment zone thickness in the afternoon, with estimates ranging from 100 to 250 m.

Corresponding author address: Sandip Pal, Dept. of Environmental Sciences, P.O. Box 400123, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904-4123. E-mail: sp5hd@virginia.edu; pal_sandy2002@yahoo.co.uk

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Save