• Berg, W., M. R. Sapiano, J. Horsman, and C. Kummerow, 2013: Improved geolocation and Earth incidence angle information for a fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 15041513, doi:10.1109/TGRS.2012.2199761.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., H. J. Christian Jr., K. Driscoll, A. M. Gadian, and J. Latham, 2001: Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos. Res., 59–60, 217229, doi:10.1016/S0169-8095(01)00117-X.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108, 4483, doi:10.1029/2002JD002951.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2015: Extremely low passive microwave brightness temperatures due to thunderstorms. Proc. 20th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., J13.1A. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper266429.html.]

  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, doi:10.1175/JCLI-D-15-0124.1.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the US NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M., A. S. Cantin, W. J. de Groot, M. Wotton, A. Newbery, and L. M. Gowman, 2013: Global wildland fire season severity in the 21st century. For. Ecol. Manage., 294, 5461, doi:10.1016/j.foreco.2012.10.022.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. T. Randerson, G. R. van der Werf, G. J. Collatz, and P. Kasibhatla, 2006: Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys., 6, 957974, doi:10.5194/acp-6-957-2006.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., G. A. Poe, D. J. Boucher, S. D. Swadley, Y. Hong, J. E. Wessel, and E. A. Uliana, 2008: Design and evaluation of the first Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens., 46, 863883, doi:10.1109/TGRS.2008.917980.

    • Search Google Scholar
    • Export Citation
  • Levy, H., II, W. J. Moxim, and R. S. Kasibhatla, 1996: A global three-dimensional time-dependent lightning source of tropospheric NOx. J. Geophys. Res., 101, 22 91122 922, doi:10.1029/96JD02341.

    • Search Google Scholar
    • Export Citation
  • Li, F., S. Levis, and D. S. Ward, 2013: Quantifying the role of fire in the Earth system—Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 22932314, doi:10.5194/bg-10-2293-2013.

    • Search Google Scholar
    • Export Citation
  • Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling, 2009: Climate and wildfire area burned in western U. S. ecoprovinces, 1916–2003. Ecol. Appl., 19, 10031021, doi:10.1890/07-1183.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., D. Cecil, and E. J. Zipser, 2011: Relationships between lightning flash rates and passive microwave brightness temperatures at 85 and 37 GHz over the tropics and subtropics. J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251, doi:10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medici, G. M., K. Cummins, W. J. Koshak, S. D. Rudlosky, R. J. Blakeslee, S. J. Goodman, D. J. Cecil, and D. R. Bright, 2015: The intra-cloud lightning fraction in the continental United States. Proc. Seventh Conf. on the Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., 348. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper264032.html.]

  • Mohr, K. I., R. Toracinta, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part II: SSM/I brightness temperatures and lightning. J. Appl. Meteor., 35, 919931, doi:10.1175/1520-0450(1996)035<0919:ACOWRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, doi:10.1029/2010JD014929.

    • Search Google Scholar
    • Export Citation
  • Nag, A., M. J. Murphy, K. L. Cummins, A. E. Pifer, and J. A. Cramer, 2014: Recent evolution of the US National Lightning Detection Network. Extended Abstracts, 23rd Int. Lightning Detection Conf., Tucson, AZ, Vaisala. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/2014%20ILDC%20ILMC/ILDC-Wednesday/Nag%20et%20al-Recent%20Evolution%20of%20the%20U.S.%20National%20Lightning%20Detection%20Network-2014-ILDC-ILMC.pdf.]

  • NOAA, 2014: Weather fatalities. NOAA/National Weather Service Weather-Ready Nation Program. [Available online at http://www.nws.noaa.gov/os/hazstats.shtml.]

  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, doi:10.1175/BAMS-89-2-180.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Pechony, O., and D. T. Shindell, 2009: Fire parameterization on a global scale. J. Geophys. Res., 114, D16115, doi:10.1029/2009JD011927.

    • Search Google Scholar
    • Export Citation
  • Prentice, S. A., and D. Mackerras, 1977: The ratio of cloud to cloud-ground lightning flashes in thunderstorms. J. Appl. Meteor., 16, 545550, doi:10.1175/1520-0450(1977)016<0545:TROCTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, C., J. Penner, and M. Prather, 1997: NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res., 102, 59295941, doi:10.1029/96JD03504.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, doi:10.1175/2008WAF2222159.1.

  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R., W. K. Berg, D. S. McKague, and C. D. Kummerow, 2013: Toward an intercalibrated fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens., 51, 14921503, doi:10.1109/TGRS.2012.2206601.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., and Coauthors, 2002: Large forest fires in Canada, 1959–1997. J. Geophys. Res., 107, 8149, doi:10.1029/2001JD000484.

  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137148, doi:10.1016/j.atmosres.2012.12.017.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, doi:10.1126/science.1128834.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, doi:10.1016/S0169-8095(99)00011-3.

    • Search Google Scholar
    • Export Citation
  • Yan, B., and F. Weng, 2008: Intercalibration between Special Sensor Microwave Imager/Sounder and Special Sensor Microwave Imager. IEEE Trans. Geosci. Remote Sens., 46, 984995, doi:10.1109/TGRS.2008.915752.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 102 12
PDF Downloads 109 94 12

Estimating Lightning from Microwave Remote Sensing Data

View More View Less
  • 1 Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
  • | 2 NASA Marshall Space Flight Center, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study evaluates a method for estimating the cloud-to-ground (CG) lightning flash rate from microwave remote sensing data. Defense Meteorological Satellite Program satellites have been in operation since 1987 and include global-viewing microwave sensors that capture thunderstorms as brightness temperature depressions. The National Lightning Detection Network (NLDN) has monitored CG lightning in the United States since 1997. This study investigates the relationship between CG lightning and microwave brightness temperature fields for the contiguous United States from April to September for the years 2005–12. The findings suggest that an exponential function, empirically fit to the NLDN and SSM/I data, provides lightning count measurements that agree to within 60%–70% with NLDN lightning, but with substantial misses and false alarms in the predictions. The discrepancies seem to be attributable to regional differences in thunderstorm characteristics that require a detailed study at smaller spatial scales to truly resolve, but snow at higher elevations also produces some anomalous microwave temperature depressions similar to those of thunderstorms. The results for the contiguous United States in this study are a step toward potentially using SSM/I data to estimate CG lightning around the world, although the sensitivity of the results to regional differences related to meteorological regimes would need further study.

Corresponding author address: Brian I. Magi, Dept. of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. E-mail: brian.magi@uncc.edu

Abstract

This study evaluates a method for estimating the cloud-to-ground (CG) lightning flash rate from microwave remote sensing data. Defense Meteorological Satellite Program satellites have been in operation since 1987 and include global-viewing microwave sensors that capture thunderstorms as brightness temperature depressions. The National Lightning Detection Network (NLDN) has monitored CG lightning in the United States since 1997. This study investigates the relationship between CG lightning and microwave brightness temperature fields for the contiguous United States from April to September for the years 2005–12. The findings suggest that an exponential function, empirically fit to the NLDN and SSM/I data, provides lightning count measurements that agree to within 60%–70% with NLDN lightning, but with substantial misses and false alarms in the predictions. The discrepancies seem to be attributable to regional differences in thunderstorm characteristics that require a detailed study at smaller spatial scales to truly resolve, but snow at higher elevations also produces some anomalous microwave temperature depressions similar to those of thunderstorms. The results for the contiguous United States in this study are a step toward potentially using SSM/I data to estimate CG lightning around the world, although the sensitivity of the results to regional differences related to meteorological regimes would need further study.

Corresponding author address: Brian I. Magi, Dept. of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. E-mail: brian.magi@uncc.edu
Save