• Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 35953623, doi:10.1175/MWR3039.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, N. F., C. A. Grainger, and J. L. Smith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738, doi:10.1175/JAM2231.1.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, doi:10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beatty, K., E. N. Rasmussen, and J. M. Straka, 2008: The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron. J. Severe Storms Meteor., 3 (4). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/44/46.]

    • Search Google Scholar
    • Export Citation
  • Belsley, D. A., E. Kuh, and R. E. Welsch, 2005: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, 292 pp.

  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920, doi:10.1175/2009WAF2222206.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 18241833, doi:10.1175/1520-0469(1993)050<1824:HCAUII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME-2. Mon. Wea. Rev., 112, 22392252, doi:10.1175/1520-0493(1984)112<2239:CIAAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corder, G. W., and D. I. Foreman, 2014: Nonparametric Statistics: A Step-by-Step Approach. Wiley, 288 pp.

  • Crowe, C. C., C. J. Schultz, M. Kumjian, L. D. Carey, and W. A. Petersen, 2012: Use of dual-polarization signatures in diagnosing tornadic potential. Electron. J. Oper. Meteor., 13 (5). [Available online at http://www.nwas.org/ej/pdf/2012-EJ5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 42444277, doi:10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, doi:10.1175/JAS-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2014: The impact of hodograph shape on hail production in idealized supercell storms. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., P20. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Manuscript/Paper255162/DennisKumjian_ExtendedAbstract_FINAL.pdf.]

  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, doi:10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ganson, S. M., and M. R. Kumjian, 2015: Quantifying the relationship between the ZDR arc signature and low-level vertical wind shear. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 13B.6. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper275479.html.]

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simultaneous estimation of microphysical parameters and the atmospheric state using simulated polarimetric radar data and an ensemble Kalman filter in the presence of an observation operator error. Mon. Wea. Rev., 138, 539562, doi:10.1175/2009MWR2748.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, doi:10.1175/2008JAS2815.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, doi:10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, doi:10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, doi:10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2014: Vorticity evolution leading to tornadogenesis and tornadogenesis failure in simulated supercells. J. Atmos. Sci., 71, 12011217, doi:10.1175/JAS-D-13-0219.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Search Google Scholar
    • Export Citation
  • Park, H., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, doi:10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, doi:10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, doi:10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74, 189203, doi:10.1175/1520-0477(1993)074<0189:ACTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, doi:10.1175/WAF-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2014: Effects of mid- and upper-level drying on microphysics of simulated supercell storms. Electron. J. Severe Storms Meteor., 9 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/134/99.]

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic southern plains supercells. J. Appl. Meteor. Climatol., 47, 12321247, doi:10.1175/2007JAMC1714.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2010: Mesocyclone and RFD evolution in simulated supercell storms with varying wind profiles. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 8A.6. [Available online at https://ams.confex.com/ams/pdfpapers/175853.pdf.]

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. N. Bringi, N. Balakrishnan, K. Aydin, V. Chandrasekar, and J. Hubbert, 1993: Polarimetric measurements in a severe hailstorm. Mon. Wea. Rev., 121, 22232238, doi:10.1175/1520-0493(1993)121<2223:PMIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 108 9
PDF Downloads 140 109 9

Polarimetric Variability of Classic Supercell Storms as a Function of Environment

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Classic supercell storms occur in a generally well understood environment characterized by instability and vertical wind shear. Within this broadly favorable environment, large day-to-day variability in environmental parameters may lead to widely varying radar presentation of storms. Of interest here is whether specific storm structures exhibit repeatable characteristics in similar environments and whether radar presentation can be predicted with knowledge of environmental characteristics. Specifically, this paper focuses on (i) updraft characteristics inferred using differential reflectivity ZDR columns, (ii) characteristics of storm-relative inflow inferred using ZDR arcs, and (iii) areal extent and cyclicality of polarimetrically inferred hailfall at low levels. Variability of these radar features is compared among storms in similar environments and among a larger subset of storms across highly varying environments. The similarity of storms in similar and different environments is quantified, and tornadic and nontornadic storms are compared. Associations between inferred updraft, inflow, and hailfall characteristics and environmental variables are discussed. Storm features generally exhibit greater similarity among storms in similar environments than across environments, although exceptions occur. The results indicate that many radar features of classic supercells may be useful to learn about microphysical variability across environments.

Corresponding author address: Matthew S. Van Den Broeke, University of Nebraska–Lincoln, 306 Bessey Hall, Lincoln, NE 68588-0340. E-mail: mvandenbroeke2@unl.edu

Abstract

Classic supercell storms occur in a generally well understood environment characterized by instability and vertical wind shear. Within this broadly favorable environment, large day-to-day variability in environmental parameters may lead to widely varying radar presentation of storms. Of interest here is whether specific storm structures exhibit repeatable characteristics in similar environments and whether radar presentation can be predicted with knowledge of environmental characteristics. Specifically, this paper focuses on (i) updraft characteristics inferred using differential reflectivity ZDR columns, (ii) characteristics of storm-relative inflow inferred using ZDR arcs, and (iii) areal extent and cyclicality of polarimetrically inferred hailfall at low levels. Variability of these radar features is compared among storms in similar environments and among a larger subset of storms across highly varying environments. The similarity of storms in similar and different environments is quantified, and tornadic and nontornadic storms are compared. Associations between inferred updraft, inflow, and hailfall characteristics and environmental variables are discussed. Storm features generally exhibit greater similarity among storms in similar environments than across environments, although exceptions occur. The results indicate that many radar features of classic supercells may be useful to learn about microphysical variability across environments.

Corresponding author address: Matthew S. Van Den Broeke, University of Nebraska–Lincoln, 306 Bessey Hall, Lincoln, NE 68588-0340. E-mail: mvandenbroeke2@unl.edu
Save