• Bohm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, doi:10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Millimeter wave scattering from ice crystal aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2013: Variability in millimeter wave scattering properties of dendritic ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 131, 105104, doi:10.1016/j.jqsrt.2013.05.009.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., K. Ikeda, G. Zhang, M. Schoenhuber, and R. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645, doi:10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, doi:10.5194/amt-5-2625-2012.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 34063413, doi:10.1175/1520-0469(2000)057<3406:MOMRSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, doi:10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gravner, J., and D. Griffeath, 2009: Modeling of snow-crystal growth: A three-dimensional mesoscopic approach. Phys. Rev. E, 79, 011601, doi:10.1103/PhysRevE.79.011601.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Z. Wang, and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 13911412, doi:10.1175/JAM2282.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R., A. Illingworth, and H. Sauvageot, 2000: Measuring crystal size in cirrus using 35- and 94-GHz radars. J. Atmos. Oceanic Technol., 17, 2737, doi:10.1175/1520-0426(2000)017<0027:MCSICU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. S. Jackson, C. Kummerow, and C. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–169.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the Light Precipitation Validation Experiment. Atmos. Res., 153, 3448, doi:10.1016/j.atmosres.2014.07.013.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from realistic ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, doi:10.1175/JAMC-D-15-0130.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005: On modeling air/spaceborne radar returns in the melting layer. IEEE Trans. Geosci. Remote Sens., 43, 27992809, doi:10.1109/TGRS.2005.848704.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46, 15141524, doi:10.1109/TGRS.2008.916079.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, H. Nowell, and G. Liu, 2013: Scattering computations of snow aggregates from simple geometrical particle models. IEEE J. Sel. Top. Earth Obs. Remote Sens., 6, 14091417, doi:10.1109/JSTARS.2013.2255262.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147.

  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521, doi:10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005: Dual-frequency ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relations for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakaya, U., 1954: Snow Crystals: Natural and Artificial. Harvard University Press, 510 pp.

  • Newman, A., P. A. Kucera, and L. Bliven, 2009: Presenting the Snow Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, doi:10.1175/2008JTECHA1148.1.

    • Search Google Scholar
    • Export Citation
  • Nowell, H., G. Liu, and R. Honeyager, 2013: Modeling the microwave single-scattering properties of aggregate snowflakes. J. Geophys. Res. Atmos., 118, 78737885, doi:10.1002/jgrd.50620.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscattering and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement Mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2014a: Snow studies. Part III: Theoretical derivations for the ensemble retrieval of snow microphysics from dual-wavelength vertically pointing radars. J. Atmos. Sci., 71, 11581170, doi:10.1175/JAS-D-12-0285.1.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2014b: Snow studies. Part IV: Ensemble retrieval of snow microphysics from dual-wavelength vertically pointing radars. J. Atmos. Sci., 71, 11721186.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., G. M. Heymsfield, L. Li, and A. J. Heymsfield, 2005: Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110, D19201, doi:10.1029/2005JD005969.

    • Search Google Scholar
    • Export Citation
  • Weinman, J., and M.-J. Kim, 2007: A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors. J. Atmos. Sci., 64, 634644, doi:10.1175/JAS3841.1.

    • Search Google Scholar
    • Export Citation
  • Zikmunda, J., and G. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29, 13341347, doi:10.1175/1520-0469(1972)029<1334:FPAFVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 214 173 19
PDF Downloads 185 147 13

Retrieval of Snow Properties for Ku- and Ka-Band Dual-Frequency Radar

View More View Less
  • 1 Goddard Earth Science Technology and Research Program, Morgan State University, Baltimore, Maryland
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 University of Maryland, Baltimore County, and Joint Center for Earth Systems Technology, Baltimore, Maryland
  • | 4 NASA Wallops Flight Facility, Wallops Island, Virginia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-/macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager/Particle Image Probe (SVI/PIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

Corresponding author address: Dr. Liang Liao, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: liang.liao-1@ nasa.gov

Abstract

The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-/macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager/Particle Image Probe (SVI/PIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

Corresponding author address: Dr. Liang Liao, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: liang.liao-1@ nasa.gov
Save