• Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer, 1976: A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964, 28 pp. [Available online at http://pubs.usgs.gov/pp/0964/report.pdf.]

  • Billingsley, P., 1965: Ergodic Theory and Information. Wiley Series in Probability and Mathematical Statistics, Vol. 1, John Wiley and Sons, 193 pp.

  • Burian, S., and J. Ching, 2009: Development of gridded fields of urban canopy parameters for advanced urban meteorological and air quality models. U.S. Environmental Protection Agency Tech. Rep. EPA/600/R-10/007, 73 pp. [Available online at https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=213904.]

  • Chen, F., and J. Dudhia, 2001: Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, doi:10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Ching, J. K. S., 2013: A perspective on urban canopy layer modeling for weather, climate and air quality applications. Urban Climate, 3, 1339, doi:10.1016/j.uclim.2013.02.001.

    • Search Google Scholar
    • Export Citation
  • Ching, J. K. S., and Coauthors, 2009: National Urban Database and Access Portal Tool. Bull. Amer. Meteor. Soc., 90, 11571168, doi:10.1175/2009BAMS2675.1.

    • Search Google Scholar
    • Export Citation
  • Chow, W., T. Volo, E. Vivoni, G. Jenerette, and B. Ruddell, 2014: Seasonal dynamics of a suburban energy balance in Phoenix, Arizona. Int. J. Climatol., 34, 38633880, doi:10.1002/joc.3947.

    • Search Google Scholar
    • Export Citation
  • Comarazamy, D. E., J. E. González, J. C. Luvall, D. L. Rickman, and P. J. Mulero, 2010: A land–atmospheric interaction study in the coastal tropical city of San Juan, Puerto Rico. Earth Interact., 14, doi:10.1175/2010EI309.1.

    • Search Google Scholar
    • Export Citation
  • Comarazamy, D. E., J. E. González, J. C. Luvall, D. L. Rickman, and R. D. Bornstein, 2013: Climate impacts of land-cover and land-use changes in tropical islands under conditions of global climate change. J. Climate, 26, 15351550, doi:10.1175/JCLI-D-12-00087.1.

    • Search Google Scholar
    • Export Citation
  • Cornfeld, I., S. Fomin, and Y. G. Sinai, 1981: Ergodic Theory. Springer-Verlag, 486 pp.

  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens., 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Glotfelty, T., M. Tewari, K. Sampson, M. Duda, F. Chen, and J. Ching, 2013: NUDAPT 44 documentation. National Center for Atmospheric Research Research Applications Laboratory Doc., 9 pp. [Available online at http://www.ral.ucar.edu/research/land/technology/urban/NUDAPT_44_Documentation.pdf.]

  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, doi:10.1175/2010JAMC2354.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272, doi:10.1002/joc.2227.

    • Search Google Scholar
    • Export Citation
  • Homer, C., C. Huang, L. Yang, B. K. Wylie, and M. Coan, 2004: Development of a 2001 National Land-Cover Database for the United States. Photogramm. Eng. Remote Sens., 70, 829840, doi:10.14358/PERS.70.7.829.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004a: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, doi:10.2151/jmsj.82.67.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004b: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with and urban canopy model. J. Appl. Meteor., 43, 18991910, doi:10.1175/JAM2169.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and evaluation of a mosaic approach in the WRF-Noah framework. J. Geophys. Res. Atmos., 118, 11 91811 935, doi:10.1002/2013JD020657.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. W. Myint, Y. Zhang, C. Galletti, X. Zhang, and B. L. Turner, 2014: Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography. Int. J. Appl. Earth Obs. Geoinf., 33, 321330, doi:10.1016/j.jag.2014.04.018.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and C. Grimmond, 2012: Multi-site evaluation of an urban land-surface model: Intra-urban heterogeneity, seasonality and parameter complexity requirements. Quart. J. Roy. Meteor. Soc., 138, 10941113, doi:10.1002/qj.963.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136, 9971019, doi:10.1002/qj.614.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2004: The Weather Research and Forecast Model: Software architecture and performance. Use of High Performance Computing in Meteorology: Proceedings of the Eleventh ECMWF Workshop, W. Zwieflhofer and G. Mozdzynski, Eds., World Scientific, 156168, doi:10.1142/9789812701831_0012.

  • Monaghan, A. J., L. Hu, N. A. Brunsell, M. Barlage, and O. V. Wilhelmi, 2014: Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. J. Geophys. Res. Atmos., 119, 63766392, doi:10.1002/2013JD021227.

    • Search Google Scholar
    • Export Citation
  • NCEP, 1999: National Centers for Environental Prediction FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 16 October 2012, doi:10.5065/D6M043C6.

  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, doi:10.1007/s00704-009-0143-8.

    • Search Google Scholar
    • Export Citation
  • Shaffer, S., W. Chow, M. Georgescu, P. Hyde, G. Jenerette, A. Mahalov, M. Moustaoui, and B. Ruddell, 2015: Multiscale modeling and evaluation of urban surface energy balance in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 54, 322338, doi:10.1175/JAMC-D-14-0051.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. National Center for Atmospheric Research Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multi-scale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194.

  • Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O’Donnell, and C. M. Rowe, 1985: Statistics for the evaluation and comparison of models. J. Geophys. Res., 90, 89959005, doi:10.1029/JC090iC05p08995.

    • Search Google Scholar
    • Export Citation
  • Xian, G., C. Homer, J. Demitz, J. Fry, N. Hossain, and J. Wickham, 2011: Change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm. Eng. Remote Sens., 77, 758762.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., M. L. Imhoff, L. Bounoua, and R. E. Wolfe, 2012: Exploring the influence of impervious surface density and shape on urban heat islands in the northeast United States using MODIS and Landsat. Can. J. Remote Sens., 38, 441451, doi:10.5589/m12-036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 56 1
PDF Downloads 52 31 0

A Method of Aggregating Heterogeneous Subgrid Land-Cover Input Data for Multiscale Urban Parameterization

View More View Less
  • 1 School of Mathematical and Statistical Sciences, and Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, Arizona
  • | 2 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
  • | 3 School of Mathematical and Statistical Sciences, and Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, Arizona
  • | 4 Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A method of representing grid-scale heterogeneous development density for urban climate models from probability density functions of subgrid-resolution observed data is proposed. Derived values are evaluated in relation to normalized Shannon entropy to provide guidance in assessing model input data. Urban fraction for dominant-class and mosaic urban contributions is estimated by combining analysis of 30-m-resolution National Land Cover Database 2006 data products for continuous impervious surface area and categorical land cover. The aim of the method is to reduce model error through improvement of urban parameterization and representation of observations employed as input data. The multiscale variation of parameter values is demonstrated for several methods of utilizing input. This approach provides multiscale and spatial guidance for determining where parameterization schemes may be misrepresenting heterogeneity of input data, along with motivation for employing mosaic techniques that are based upon assessment of input data. The proposed method has wider potential for geographic application and complements data products that focus on characterizing central business districts. It utilizes observations to obtain a parameterization of urban fraction that is dependent upon resolution and class-partition scheme, thus providing one means of influencing simulation prediction at various aggregated grid scales.

Denotes Open Access content.

Corresponding author address: Stephen R. Shaffer, School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk PSA 216, Tempe, AZ 85287-1804. E-mail: stephen.shaffer@asu.edu

Abstract

A method of representing grid-scale heterogeneous development density for urban climate models from probability density functions of subgrid-resolution observed data is proposed. Derived values are evaluated in relation to normalized Shannon entropy to provide guidance in assessing model input data. Urban fraction for dominant-class and mosaic urban contributions is estimated by combining analysis of 30-m-resolution National Land Cover Database 2006 data products for continuous impervious surface area and categorical land cover. The aim of the method is to reduce model error through improvement of urban parameterization and representation of observations employed as input data. The multiscale variation of parameter values is demonstrated for several methods of utilizing input. This approach provides multiscale and spatial guidance for determining where parameterization schemes may be misrepresenting heterogeneity of input data, along with motivation for employing mosaic techniques that are based upon assessment of input data. The proposed method has wider potential for geographic application and complements data products that focus on characterizing central business districts. It utilizes observations to obtain a parameterization of urban fraction that is dependent upon resolution and class-partition scheme, thus providing one means of influencing simulation prediction at various aggregated grid scales.

Denotes Open Access content.

Corresponding author address: Stephen R. Shaffer, School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk PSA 216, Tempe, AZ 85287-1804. E-mail: stephen.shaffer@asu.edu
Save