Modeling Solar Irradiance and Solar PV Power Output to Create a Resource Assessment Using Linear Multiple Multivariate Regression

Christopher T. M. Clack Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Christopher T. M. Clack in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need for more accessible solar irradiance and power production estimates for use in power modeling software. In the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource dataset created by combining numerical weather prediction assimilation model variables, satellite data, and high-resolution ground-based measurements is also presented. The dataset contains ≈152 000 geographic locations each with ≈26 000 hourly time steps. The solar irradiance outputs are global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed over the United States by training a linear multiple multivariate regression scheme at 10 locations. The technique is then applied to independent locations over the whole geographic domain. The irradiance estimates are input into a solar PV power modeling algorithm to compute solar PV power estimates for every 13-km grid cell. The dataset is analyzed to predict the capacity factors for solar resource sites around the United States for 2006–08. Statistics are shown to validate the skill of the scheme at geographic sites independent of the training set. In addition, it is shown that more high-quality, geographically dispersed, observation sites increase the skill of the scheme.

Denotes Open Access content.

Current affiliation: Vibrant Clean Energy, LLC, Erie, Colorado.

Corresponding author e-mail: Christopher Clack, chrisclack84@gmail.com

Abstract

The increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need for more accessible solar irradiance and power production estimates for use in power modeling software. In the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource dataset created by combining numerical weather prediction assimilation model variables, satellite data, and high-resolution ground-based measurements is also presented. The dataset contains ≈152 000 geographic locations each with ≈26 000 hourly time steps. The solar irradiance outputs are global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed over the United States by training a linear multiple multivariate regression scheme at 10 locations. The technique is then applied to independent locations over the whole geographic domain. The irradiance estimates are input into a solar PV power modeling algorithm to compute solar PV power estimates for every 13-km grid cell. The dataset is analyzed to predict the capacity factors for solar resource sites around the United States for 2006–08. Statistics are shown to validate the skill of the scheme at geographic sites independent of the training set. In addition, it is shown that more high-quality, geographically dispersed, observation sites increase the skill of the scheme.

Denotes Open Access content.

Current affiliation: Vibrant Clean Energy, LLC, Erie, Colorado.

Corresponding author e-mail: Christopher Clack, chrisclack84@gmail.com
Save
  • Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, 2005: An update on SURFRAD—The GCOS Surface Radiation Budget Network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, doi:10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Clack, C. T. M., Y. Xie, and A. E. MacDonald, 2015: Linear programming techniques for developing an optimal electrical system including high-voltage direct-current transmission and storage. Int. J. Electr. Power Energy Syst., 68, 103114, doi:10.1016/j.ijepes.2014.12.049.

    • Search Google Scholar
    • Export Citation
  • Clack, C. T. M., A. Alexander, A. Choukulkar, and A. E. MacDonald, 2016: Demonstrating the effect of vertical and directional shear for resource mapping of wind power. Wind Energy, 19, 16871697, doi:10.1002/we.1944.

    • Search Google Scholar
    • Export Citation
  • Deshmukh, M. K., and S. S. Deshmukh, 2008: Modeling of hybrid renewable energy systems. Renewable Sustainable Energy Rev., 12, 235249, doi:10.1016/j.rser.2006.07.011.

    • Search Google Scholar
    • Export Citation
  • De Soto, W., S. A. Klein, and W. A. Beckman, 2006: Improvement and validation of a model for photovoltaic array performance. Sol. Energy, 80, 7888, doi:10.1016/j.solener.2005.06.010.

    • Search Google Scholar
    • Export Citation
  • Djebbar, R., R. Morris, D. Thevenard, R. Perez, and J. Schlemmer, 2012: Assessment of SUNY version 3 global horizontal and direct normal solar irradiance in Canada. Energy Procedia, 30, 12741283, doi:10.1016/j.egypro.2012.11.140.

    • Search Google Scholar
    • Export Citation
  • Dominguez-Ramos, A., M. Held, R. Aldaco, M. Fischer, and A. Irabiena, 2010: Carbon footprint assessment of photovoltaic modules manufacture scenario. Proc. ESCAPE-20: European Symp. on Computer Aided Process Engineering, Ischia, Naples, Italy, Italian Association of Chemical Engineering. [Available online at http://www.aidic.it/escape20/webpapers/305Dominguez-Ramos.pdf.]

  • Geuder, N., F. Trieb, C. Schillings, R. Meyer, and V. Quaschning, 2003: Comparison of different methods for measuring solar irradiation data. Third Int. Conf. on Experiences with Automatic Weather Stations, Torremolinos, Spain, Instituto de Nacional Meteorologia. [Available online at http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/publications/Automatic_Weather_Stations_2003_NGeuder.pdf.]

  • Hammer, A., D. Heinemann, E. Lorenz, and B. Lockehe, 1999: Short-term forecasting of solar radiation: A statistical approach using satellite data. Sol. Energy, 67, 139150, doi:10.1016/S0038-092X(00)00038-4.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., J. J. DeLuisi, and D. R. Matt, 1996: The NOAA Integrated Surface Irradiance Study (ISIS): A new surface radiation monitoring program. Bull. Amer. Meteor. Soc., 77, 28572864, doi:10.1175/1520-0477(1996)077<2857:TNISIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houborg, R., H. Soegaard, W. Emmerich, and S. Moran, 2007: Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data. Int. J. Remote Sens., 28, 45094535, doi:10.1080/01431160701241902.

    • Search Google Scholar
    • Export Citation
  • Huang, C., M. Huang, and C. Chen, 2013: A novel power output model for photovoltaic systems. Int. J. Smart Grid Clean Energy, 2, 139147, doi:10.12720/sgce.2.2.139-147.

    • Search Google Scholar
    • Export Citation
  • King, D. L., S. Gonzalez, G. M. Galbraith, and W. E. Boyson, 2004: Performance model for grid-connected photovoltaic inverters. Sandia National Laboratories Tech. Rep., 41 pp. [Available online at http://energy.sandia.gov/wp/wp-content/gallery/uploads/043535.pdf.]

  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Kratzenberg, M. G., S. Colle, and H. G. Beyer, 2008: Solar radiation prediction based on the combination of a numerical weather prediction model and a time series prediction model. Proc. First Int. Congress on Heating, Cooling, and Buildings: EuroSun 2008, Lisbon, Portugal, Int. Solar Energy Society, 12 pp.

  • Lueken, C., G. E. Cohen, and J. Apt, 2012: Costs of solar and wind power variability for reducing CO2 emissions. Environ. Sci. Technol., 46, 97619767, doi:10.1021/es204392a.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A. E., C. T. M. Clack, A. Alexander, A. Dunbar, J. Wilczak, and Y. Xie, 2016: Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Climate Change, 6, 526531, doi:10.1038/nclimate2921.

    • Search Google Scholar
    • Export Citation
  • Masters, G. M., 2004: Renewable and Efficient Electric Power Systems. John Wiley and Sons, 680 pp.

  • Mathiesen, P., and J. Kleissl, 2011: Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol. Energy, 85, 967977, doi:10.1016/j.solener.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Mathiesen, P., C. Collier, and J. Kleissl, 2013: A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Sol. Energy, 92, 4761, doi:10.1016/j.solener.2013.02.018.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., and Coauthors, 2003: Results from the first ARM diffuse horizontal shortwave irradiance comparison. J. Geophys. Res., 108, 4108, doi:10.1029/2002JD002906.

    • Search Google Scholar
    • Export Citation
  • Mills, A., and R. Wiser, 2010: Implications of wide-area geographic diversity for short term variability of solar power. Lawrence Berkley National Laboratory Tech. Rep., 22 pp. [Available online at https://emp.lbl.gov/sites/all/files/presentation-lbnl-3884e-ppt.pdf.]

  • Myers, D. R., 2005: Solar radiation modeling and measurements for renewable energy applications: Data and model quality. Energy, 30, 15171531, doi:10.1016/j.energy.2004.04.034.

    • Search Google Scholar
    • Export Citation
  • Nottrott, A., and J. Kleissl, 2010: Validation of the NSRDB–SUNY global horizontal irradiance in California. Sol. Energy, 84, 18161827, doi:10.1016/j.solener.2010.07.006.

    • Search Google Scholar
    • Export Citation
  • Parida, B., S. Iniyanb, and R. Goic, 2011: A review of solar photovoltaic technologies. Renewable Sustainable Energy Rev., 15, 16251636, doi:10.1016/j.rser.2010.11.032.

    • Search Google Scholar
    • Export Citation
  • Paulescu, M., E. Paulescu, P. Gravila, and V. Badescu, 2013: Weather Modeling and Forecasting of PV Systems Operation. Springer, 358 pp., doi:10.1007/978-1-4471-4649-0.

  • Pearson, K., 1908: On the generalized probable error in multiple normal correlation. Biometrika, 6, 5968, doi:10.1093/biomet/6.1.59.

  • Perez, R., and Coauthors, 2013: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Solar Energy, 94, 305326, doi:10.1016/j.solener.2013.05.005.

    • Search Google Scholar
    • Export Citation
  • Solanki, C. S., 2009: Solar Photovoltaics: Fundamentals, Technologies and Applications. PHI Learning, 478 pp.

  • Spencer, J. W., 1971: Fourier series representation of the position of the sun. Search, 2, 172. [Available online at http://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html.]

  • Stanton, J. M., 2001: Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. J. Stat. Educ., 9, 3. [Available online at https://ww2.amstat.org/publications/jse/v9n3/stanton.html.]

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1961: Economic Forecasts and Policy. Contributions to Economic Analysis, Vol. 15, North-Holland, 567 pp.

  • Vignola, F., and R. Perez, 2004: Solar resource GIS data base for the Pacific Northwest using satellite data: Final report. Solar Radiation Monitoring Laboratory Tech. Rep., University of Oregon, 73 pp. [Available online at http://solardat.uoregon.edu/download/Papers/SolarResourceGISDataBaseforthePacificNorthwestusingSatelliteData--FinalReport.pdf.]

  • Vignola, F., P. Harlan, R. Perez, and M. Kmiecik, 2007: Analysis of satellite derived beam and global solar radiation data. Sol. Energy, 81, 768772, doi:10.1016/j.solener.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Vignola, F., J. Michalsky, and T. Stoffel, 2012: Solar and Infrared Radiation Measurements. CRC Press, 410 pp.

  • Wang, K., J. Augustine, and R. E. Dickinson, 2012: Critical assessment of surface incident solar radiation observations collected by SURFRAD, USCRN and AmeriFlux networks from 1995 to 2011. J. Geophys. Res., 117, D23105, doi:10.1029/2012JD017945.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., F. Wang, and S. Su, 2011: Solar irradiance short-term prediction model based on BP neural network. Energy Procedia, 12, 488494, doi:10.1016/j.egypro.2011.10.065.

    • Search Google Scholar
    • Export Citation
  • Wong, L., and W. Chow, 2001: Solar radiation model. Appl. Energy, 69, 191224, doi:10.1016/S0306-2619(01)00012-5.

  • Zhou, W., H. Yang, and Z. Fang, 2007: A novel model for photovoltaic array performance prediction. Appl. Energy, 84, 11871198, doi:10.1016/j.apenergy.2007.04.006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14822 1268 148
PDF Downloads 11870 640 41