Case Study and Climatological Analysis of Upper-Tropospheric Jet Stream and Stratosphere–Troposphere Exchanges Using VHF Profilers and Radionuclide Measurements in France

Jean-Luc Baray Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Jean-Luc Baray in
Current site
Google Scholar
PubMed
Close
,
Yves Pointin Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Yves Pointin in
Current site
Google Scholar
PubMed
Close
,
Joël Van Baelen Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Joël Van Baelen in
Current site
Google Scholar
PubMed
Close
,
Marie Lothon Laboratoire d’Aérologie, UMR5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by Marie Lothon in
Current site
Google Scholar
PubMed
Close
,
Bernard Campistron Laboratoire d’Aérologie, UMR5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by Bernard Campistron in
Current site
Google Scholar
PubMed
Close
,
Jean-Pierre Cammas Laboratoire de l’Atmosphère et des Cyclones, UMR8105, OSU-Réunion, Saint Denis de la Réunion, France

Search for other papers by Jean-Pierre Cammas in
Current site
Google Scholar
PubMed
Close
,
Olivier Masson Institut de Radioprotection et de Sûreté Nucléaire, Saint Paul lez Durance, France

Search for other papers by Olivier Masson in
Current site
Google Scholar
PubMed
Close
,
Aurélie Colomb Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Aurélie Colomb in
Current site
Google Scholar
PubMed
Close
,
Claude Hervier Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Claude Hervier in
Current site
Google Scholar
PubMed
Close
,
Yannick Bezombes Laboratoire d’Aérologie, UMR5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by Yannick Bezombes in
Current site
Google Scholar
PubMed
Close
,
Sandra Banson Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Sandra Banson in
Current site
Google Scholar
PubMed
Close
,
Christophe Duroure Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Christophe Duroure in
Current site
Google Scholar
PubMed
Close
,
Dany Hadad Laboratoire de Météorologie Physique, UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France

Search for other papers by Dany Hadad in
Current site
Google Scholar
PubMed
Close
, and
Frédéric Tridon Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom

Search for other papers by Frédéric Tridon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors present a climatological analysis of tropospheric horizontal wind profiles and jet stream events using long series of wind profiles from two VHF profilers located in France: Lannemezan (2001–14) and Opme (1999–2014). A case study of jet stream and stratospheric intrusion of air into the troposphere that occurred in January 2013 is first described and demonstrates the capability of the VHF profilers to detect jet stream events. The climatology study over the two sites reveals the strongest values of seasonal wind during winter (21.4 m s−1 at 8.7-km height at Opme; 25.1 m s−1 at 9.6-km height at Lannemezan). A methodology based on the automatic detection of maximum winds on a decadal series of hourly wind profiles allows the detection of jet stream events and establishes its climatology for each site. A frequency analysis of jet stream events of westerly winds over 50 m s−1 presents a clear seasonality at the two sites, with a maximum in winter (3.5%–9.7% of hourly profiles) and a minimum in summer (near 1%). Cosmogenic radionuclides sampled at Opme also exhibit a clear seasonal variation with maximum in spring and minimum in the cold seasons; the 7Be/22Na activity ratio confirms stratosphere-to-troposphere exchanges for the studied cases. The mean interannual variability of the frequency of jet stream events is 1.5% in Opme and 2.9% in Lannemezan. Positive decadal trends are observed for the two sites: +1.6 ± 1.2% decade−1 for Opme and +2.4 ± 2.2% decade−1 for Lannemezan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr Jean-Luc Baray, j.l.baray@opgc.fr

Abstract

The authors present a climatological analysis of tropospheric horizontal wind profiles and jet stream events using long series of wind profiles from two VHF profilers located in France: Lannemezan (2001–14) and Opme (1999–2014). A case study of jet stream and stratospheric intrusion of air into the troposphere that occurred in January 2013 is first described and demonstrates the capability of the VHF profilers to detect jet stream events. The climatology study over the two sites reveals the strongest values of seasonal wind during winter (21.4 m s−1 at 8.7-km height at Opme; 25.1 m s−1 at 9.6-km height at Lannemezan). A methodology based on the automatic detection of maximum winds on a decadal series of hourly wind profiles allows the detection of jet stream events and establishes its climatology for each site. A frequency analysis of jet stream events of westerly winds over 50 m s−1 presents a clear seasonality at the two sites, with a maximum in winter (3.5%–9.7% of hourly profiles) and a minimum in summer (near 1%). Cosmogenic radionuclides sampled at Opme also exhibit a clear seasonal variation with maximum in spring and minimum in the cold seasons; the 7Be/22Na activity ratio confirms stratosphere-to-troposphere exchanges for the studied cases. The mean interannual variability of the frequency of jet stream events is 1.5% in Opme and 2.9% in Lannemezan. Positive decadal trends are observed for the two sites: +1.6 ± 1.2% decade−1 for Opme and +2.4 ± 2.2% decade−1 for Lannemezan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr Jean-Luc Baray, j.l.baray@opgc.fr
Save
  • Adachi, A., T. Kobayashi, K. Gage, D. Carter, L. Hartten, W. Clark, and M. Fukuda, 2005: Evaluation of three-beam and four-beam profiler wind measurement techniques using a five-beam wind profiler and collocated meteorological tower. J. Atmos. Oceanic Technol., 22, 11671180, doi:10.1175/JTECH1777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agelao, G., F. Cannizzaro, G. Greco, S. Rizzo, and M. C. Spitale, 1984: Sampling and concentration measurements of 7Be and 137Cs in ground-level air at Palermo. Health Phys., 47, 96101.

    • Search Google Scholar
    • Export Citation
  • Ajtić, J. V., D. J. Todorović, J. D. Nikolić, and V. S. Djurdjević, 2013: A multi-year study of radioactivity in surface air and its relation to climate variables in Belgrade, Serbia. Nucl. Technol. Radiat. Prot., 28, 381388, https://doi.org/10.2298/NTRP1304381A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancellet, G., J. Pelon, M. Beekmann, A. Papayannis, and G. Mégie, 1991: Ground-based lidar studies of ozone exchanges between the stratosphere and the troposphere. J. Geophys. Res., 96, 22 40122 421, doi:10.1029/91JD02385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008a: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Archer, C. L., and K. Caldeira, 2008b: Reply to comment by Courtenay Strong and Robert E. Davis on “Historical trends in the jet streams.” Geophys. Res. Lett., 35, L24807, doi:10.1029/2008GL035114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, J., and H. Al-Salih, 1955: Beryllium-7 produced by cosmic rays. Science, 121, 451453, doi:10.1126/science.121.3144.451.

  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baray, J.-L., G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, and P. Keckhut, 1998: Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere. J. Atmos. Sol.-Terr. Phys., 60, 2736, doi:10.1016/S1364-6826(97)00116-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baray, J.-L., G. Clain, M. Plu, E. Feld, and P. Caroff, 2010: Occurrence of monsoon depressions in the southwest Indian Ocean: Synoptic descriptions and stratosphere to troposphere exchange investigations. J. Geophys. Res., 115, D17108, doi:10.1029/2009JD013390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, N. P., and A. W. Ellis, 2009: Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol., 29, 851862, doi:10.1002/joc.1750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertin, F., B. Campistron, J.-L. Caccia, and R. Wilson, 2001: Mixing processes in a tropopause folding observed by a network of ST radar and lidar. Ann. Geophys., 19, 953963, doi:10.5194/angeo-19-953-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., J. Methven, and N. Roberts, 2008: Large-scale context for the UK floods in summer 2007. Weather, 63, 280288, doi:10.1002/wea.322.

  • Błazej, S., and J. W. Mietelski, 2014: Cosmogenic 22Na, 7Be and terrestrial 137Cs, 40K radionuclides in ground level air samples collected weekly in Krakow (Poland) over years 2003–2006. J. Radioanal. Nucl. Chem., 300, 747756, doi:10.1007/s10967-014-3049-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., A. Jansa Clar, B. Benech, B. Carissimo, J. Pelon, and E. Richard, 1990: Momentum budget over the Pyrénées: The PYREX experiment. Bull. Amer. Meteor. Soc., 71, 806818, doi:10.1175/1520-0477(1990)071<0806:MBOTPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukunt, B. P., and G. M. Barnes, 2015: The subtropical jet stream delivers the coup de grace to Hurricane Felicia (2009). Wea. Forecasting, 30, 10391049, doi:10.1175/WAF-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caccia, J.-L., and J.-P. Cammas, 1998: VHF-ST radar observations of an upper-level front using vertical and oblique-beam CN2 measurements. Mon. Wea. Rev., 126, 483501, doi:10.1175/1520-0493(1998)126<0483:VSROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caccia, J.-L., F. Bertin, B. Campistron, V. Klaus, Y. Pointin, J. van Baelen, and R. Wilson, 2000: Cut-off low monitoring by the French VHF-ST-radar network during the ESTIME campaign. J. Atmos. Sol.-Terr. Phys., 62, 639651, doi:10.1016/S1364-6826(00)00045-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campistron, B., G. Despaux, M. Lothon, V. Klaus, Y. Pointin, and M. Mauprivez, 2001: A partial 45 MHz sky temperature map obtained from the observations of five ST radars. Ann. Geophys., 19, 863871, doi:10.5194/angeo-19-863-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., H. Douville, and Y. Peings, 2013: European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Climate Dyn., 41, 28892907, doi:10.1007/s00382-013-1731-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clain, G., J.-L. Baray, R. Delmas, P. Keckhut, and J.-P. Cammas, 2010: A Lagrangian approach to analyse the tropospheric ozone climatology in the tropics: Climatology of stratosphere–troposphere exchange at Reunion Island. Atmos. Environ., 44, 968975, doi:10.1016/j.atmosenv.2009.08.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, https://doi.org/10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Cristofanelli, P., P. Bonasoni, L. Tositti, U. Bonafé, F. Calzolari, F. Evangelisti, S. Sandrini, and A. Stohl, 2006: A 6-year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m above sea level). J. Geophys. Res., 111, D03306, doi:10.1029/2005JD006553.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, P. G. Fogli, E. Manzini, S. Gualdi, and A. Navarra, 2014: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Climate Dyn., 43, 7185, https://doi.org/10.1007/s00382-013-1873-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degirmendžić, J., and J. Wibig, 2007: Jet stream patterns over Europe in the period 1950–2001—Classification and basic statistical properties. Theor. Appl. Climatol., 88, 149167, doi:10.1007/s00704-006-0237-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz de Argandona, J., A. Ezcurra, J. Saenz, B. Campistron, G. Ibarra-Berastegi, and F. Saïd, 2010: Atmospheric tides over the Pyrenees: Observational study and numerical simulation. Quart. J. Roy. Meteor. Soc., 136, 12631274, https://doi.org/10.1002/qj.626

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1988: Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys., 77, 240266, doi:10.1016/0021-9991(88)90165-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duflot, V., and Coauthors, 2010: Analysis of the origin of distribution of CO in the subtropical southern Indian Ocean in 2007. J. Geophys. Res., 115, D22106, https://doi.org/10.1029/2010JD013994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1979: Continuous measurement of upper atmospheric winds and turbulence using a VHF Doppler radar: Preliminary results. J. Atmos. Sol.-Terr. Phys., 41, 983994, doi:10.1016/0021-9169(79)90099-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feely, H. W., R. J. Larsen, and C. G. Sanderson, 1989: Factors that cause seasonal variations in beryllium-7 concentrations in surface air. J. Environ. Radioact., 9, 223249, doi:10.1016/0265-931X(89)90046-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fereday, D. R., A. Maidens, A. Arribas, A. A. Scaife, and J. R. Knight, 2012: Seasonal forecasts of Northern Hemisphere winter 2009/10. Environ. Res. Lett., 7, 034031, doi:10.1088/1748-9326/7/3/034031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freney, E., and Coauthors, 2016: Experimental evidence of the feeding of the free troposphere with aerosol particles from the mixing layer. Aerosol Air Qual. Res., 16, 702716, doi:10.4209/aaqr.2015.03.0164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fréville, P., and Coauthors, 2015: Lidar developments at Clermont-Ferrand—France for atmospheric observation. Sensors, 15, 30413069, doi:10.3390/s150203041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukao, S., M. F. Larsen, M. D. Yamanaka, H. Furukawa, T. Tsuda, and S. Kato, 1991: Observations of a reversal in long-term average vertical velocities near the jet stream wind maximum. Mon. Wea. Rev., 119, 14791489, doi:10.1175/1520-0493(1991)119<1479:OOARIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gäggeler, H. W., 1995: Radioactivity in the atmosphere. Radiochim. Acta, 70, 345353, https://doi.org/10.1524/ract.1995.7071.special-issue.345.

    • Search Google Scholar
    • Export Citation
  • Haefele, A., M. Hervo, and G. Martucci, 2014: The E-PROFILE network for operational wind, aerosol and cloud observations. ICAP Sixth Technical Working Group Meeting NWP Applications to Aerosol Forecast and Satellite Verification, Boulder, CO, International Cooperative for Aerosol Prediction, http://icap.atmos.und.edu/ICAP6/Day2/Haefele_E-PROFILE_.pdf.

  • Hall, R., R. Erdelyi, E. Hanna, J. M. Jones, and A. A. Scaife, 2015: Drivers of North Atlantic Polar Front jet stream variability. Int. J. Climatol., 35, 16971720, doi:10.1002/joc.4121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, R. D., 2012: Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010. Atmos. Chem. Phys., 12, 77977808, doi:10.5194/acp-12-7797-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, A. R., 2016: Stratosphere-troposphere exchange and its specific features at extratropical latitudes. Russ. Meteor. Hydrol., 41, 170185, doi:10.3103/S106837391603002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasiulionis, R., and H. Wershofen, 2005: A study of the vertical diffusion of the cosmogenic radionuclides, 7Be and 22Na in the atmosphere. J. Environ. Radioact., 79, 157169, doi:10.1016/j.jenvrad.2004.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. E., E. S. Jung, B. Campistron, and B. H. Heo, 2001: A physical examination of tropopause height and stratospheric air intrusion—A case study. J. Meteor. Soc. Japan, 79, 10931103, doi:10.2151/jmsj.79.1093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18, 172191, doi:10.1175/1520-0469(1961)018<0172:TSJSOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X. Y., Y. C. Zhang, Y. Huang, and D. Huang, 2014: Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism. Theor. Appl. Climatol., 117, 103112, doi:10.1007/s00704-013-0994-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulan, A., A. Aldahan, G. Possnert, and I. Vintersved, 2006: Distribution of 7Be in surface air of Europe. Atmos. Environ., 40, 38553868, doi:10.1016/j.atmosenv.2006.02.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppänen, A. P., I. G. Usoskin, G. A. Kovaltsev, and J. Paatero, 2012: Cosmogenic 7Be and 22Na in Finland: Production, observed periodicities and connection to climatic phenomena. J. Atmos. Sol.-Terr. Phys., 74, 164180, doi:10.1016/j.jastp.2011.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., K. S. Gage, and W. L. Ecklund, 1990: Uncertainties in estimates of the mean vertical velocity from MST radar observations. Radio Sci., 25, 933940, doi:10.1029/RS025i005p00933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmin, E., and C. W. Newton, 1948: A study of the mean wind and temperature distribution in the vicinity of the polar front in winter. J. Meteor., 5, 220226, doi:10.1175/1520-0469(1948)005<0220:ASOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pena-Ortiz, C., D. Gallego, P. Ribera, P. Ordonez, and M. D. C. Alvarez-Castro, 2013: Observed trends in the global jet stream characteristics during the second half of the 20th century. J. Geophys. Res., 118, 27022713, https://doi.org/10.1002/jgrd.50305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, B., 1959: Cosmic-ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J. Atmos. Sol.-Terr. Phys., 13, 351370, doi:10.1016/0021-9169(59)90124-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petitdidier, M., J.-L. Caccia, M. Djebli, V. Klaus, and Y. B. Pointin, 1997: Wind profilers: From PYREX to MAP. Extended Abstracts, COST-76 Profiler Workshop 1997, Engelberg, Switzerland, European Commission.

  • Rao, I., V. Anandan, and P. Reddy, 2008: Evaluation of DBS wind measurement technique in different beam configurations for a VHF wind profiler. J. Atmos. Oceanic Technol., 25, 23042312, doi:10.1175/2008JTECHA1113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, 2009: The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument. J. Atmos. Oceanic Technol., 26, 25012515, doi:10.1175/2009JTECHA1309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, doi:10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V., 1953: Cloud forms of the jet stream. Tellus, 5, 2731, doi:10.1111/j.2153-3490.1953.tb01032.x.

  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, doi:10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staley, D., 1960: Evaluation of potential vorticity changes near the tropopause and the related vertical motions, vertical advection of vorticity, and transfer of radioactive debris from the stratosphere. J. Meteor., 17, 591620, https://doi.org/10.1175/1520-0469(1960)017<0591:EOPVCN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinmann, P., M. Zeller, P. Beuret, G. Ferreri, and S. Estier, 2013: Cosmogenic 7Be and 22Na in ground level air in Switzerland (1994–2011). J. Environ. Radioact., 124, 6873, doi:10.1016/j.jenvrad.2013.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauch, R., B. Weber, A. Frisch, C. Little, D. Merritt, K. Moran, and D. Welsh, 1987: The precision and relative accuracy of profiler wind measurements. J. Atmos. Oceanic Technol., 4, 563571, doi:10.1175/1520-0426(1987)004<0563:TPARAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 21092115, doi:10.1002/qj.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2008: Comment on “Historical trends in the jet streams” by Cristina L. Archer and Ken Caldeira. Geophys. Res. Lett., 35, L24806, doi:10.1029/2008GL034829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., R. J. Winder, and R. Rüster, 1986: The characteristics of VHF radar echoes from the tropopause region near a jet stream. J. Atmos. Sol.-Terr. Phys., 48, 261265, doi:10.1016/0021-9169(86)90100-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokuyama, H., and S. Igarashi, 1998: Seasonal variation in the environmental background level of cosmic-ray-produced 22Na at Fukui City, Japan. J. Environ. Radioact., 38, 147161, doi:10.1016/S0265-931X(97)88739-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trickl, T., N. Bärtsch-Ritter, H. Eisele, M. Furger, R. Mücke, M. Sprenger, and A. Stohl, 2011: High-ozone layers in the middle and upper troposphere above central Europe: Potential import from the stratosphere along the subtropical jet stream. Atmos. Chem. Phys., 11, 93439366, doi:10.5194/acp-11-9343-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, doi:10.1175/JCLI-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoe, J. O., and R. Rüster, 1992: VHF Doppler radar observations of vertical velocities in the vicinity of the jet stream. Mon. Wea. Rev., 120, 23782382, doi:10.1175/1520-0493(1992)120<2378:VDROOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1924 1352 50
PDF Downloads 253 32 4