Intraseasonal Variations of Winter Wind Chill Temperatures across Canada and the United States

Macy E. Howarth Department of Geoscience, Hobart and William Smith Colleges, Geneva, and Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Macy E. Howarth in
Current site
Google Scholar
PubMed
Close
and
Neil F. Laird Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York

Search for other papers by Neil F. Laird in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind chill temperature (WCT) is a measure of the human sensation of cold and also is a parameter used to represent the severity of winter weather. This study provides a unique investigation to quantify the spatial patterns of monthly mean, extreme, and severe WCTs across Canada and the United States. WCT was examined across 45 winters (December–February) spanning 1969/70–2013/14 using 156 surface locations reporting hourly meteorological conditions. Intraseasonal analyses of WCT showed that January had 1) the coldest mean WCTs, 2) the most extreme WCTs as statistically represented by the coldest 1% of the monthly WCT frequency distribution at each surface location, and 3) the greatest frequency of severe WCT hours that were ≤ −32°C. The most extreme WCTs were most often located in the Hudson Bay region of Canada, and north-central and northeastern North America experienced the largest monthly changes in WCT during the winter season. Results suggest that intraseasonal changes of air temperature are the primary influence on variations of WCT and that changes of wind speed are a secondary factor.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Neil F. Laird, laird@hws.edu

Abstract

Wind chill temperature (WCT) is a measure of the human sensation of cold and also is a parameter used to represent the severity of winter weather. This study provides a unique investigation to quantify the spatial patterns of monthly mean, extreme, and severe WCTs across Canada and the United States. WCT was examined across 45 winters (December–February) spanning 1969/70–2013/14 using 156 surface locations reporting hourly meteorological conditions. Intraseasonal analyses of WCT showed that January had 1) the coldest mean WCTs, 2) the most extreme WCTs as statistically represented by the coldest 1% of the monthly WCT frequency distribution at each surface location, and 3) the greatest frequency of severe WCT hours that were ≤ −32°C. The most extreme WCTs were most often located in the Hudson Bay region of Canada, and north-central and northeastern North America experienced the largest monthly changes in WCT during the winter season. Results suggest that intraseasonal changes of air temperature are the primary influence on variations of WCT and that changes of wind speed are a secondary factor.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Neil F. Laird, laird@hws.edu
Save
  • Balafoutis, C., 1989: Diurnal variation of wind-chill at Thessaloniki, Greece. Int. J. Biometeor., 33, 266271, doi:10.1007/BF01051088.

  • Baldwin, H., and P. Smithson, 1979: Wind chill in upland Britain. Weather, 34, 294308, doi:10.1002/j.1477-8696.1979.tb03457.x.

  • Bluestein, M., and J. Zecher, 1999: A new approach to an accurate wind chill factor. Bull. Amer. Meteor. Soc., 80, 18931899, doi:10.1175/1520-0477(1999)080<1893:ANATAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carder, M., R. McNamee, I. Beverland, R. Elton, G. R. Cohen, J. Boyd, and R. M. Agius, 2005: The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. Occup. Environ. Med., 62, 702710, doi:10.1136/oem.2004.016394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large‐scale circulation. J. Geophys. Res., 111, D02114, doi:10.1029/2005JD006273.

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention, 2005: Hypothermia-related deaths: United States, 2003–2004. Morbidity Mortal. Wkly. Rep., 54, 173175.

    • Search Google Scholar
    • Export Citation
  • Coleman, J. S., and R. M. Schwartz, 2017: An updated blizzard climatology of the contiguous United States (1959–2014): An examination of spatiotemporal trends. J. Appl. Meteor. Climatol., 56, 173187, doi:10.1175/JAMC-D-15-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B., and C. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, doi:10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronato, F., 1993: Wind chill factor applied to Patagonian climatology. Int. J. Biometeor., 37, 16, doi:10.1007/BF01212759.

  • Coronato, F., 1995: Wind chill influence on thermal conditions in north Patagonia. Int. J. Biometeor., 39, 8793, doi:10.1007/BF01212586.

  • Danielsson, U., 1996: Windchill and the risk of tissue freezing. J. Appl. Physiol., 81, 26662673.

  • Eagan, C., 1964: The effect of air movement on atmospheric cooling power. In Review of research on military problems in cold regions. C. Kolb and F. Holstrom, Eds., Arctic Aeromedical Laboratory Tech. Rep. TDR-64-28, 147–156.

  • Gao, Y., L. R. Leung, J. Lu, and G. Masato, 2015: Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett., 10, 044001, doi:10.1088/1748-9326/10/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, J., P. Davies, S. Gill, and D. Beevers, 1988: Wind-chill and the seasonal variation of cerebrovascular disease. J. Clin. Epidemiol., 41, 225230, doi:10.1016/0895-4356(88)90125-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J., O. Heroux, W. Cottle, and C. Mills, 1961: The influence of climate on metabolic and thermal responses of infant caribou. Can. J. Zool., 39, 845856, doi:10.1139/z61-079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keimig, F., and R. Bradley, 2002: Recent changes in wind chill temperatures at high latitudes in North America. Geophys. Res. Lett., 29, 4-14-4, doi:10.1029/2001gl013228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, D., J. Walsh, and M. Shulski, 2009: What killed the reindeer of Saint Matthew Island? Weatherwise, 62 (6), 3238, doi:10.1080/00431670903337581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999a: Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol., 19, 471488, doi:10.1002/(SICI)1097-0088(199904)19:5<471::AID-JOC367>3.0.CO;2-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999b: Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Climate Res., 13, 193205, doi:10.3354/cr013193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and S. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, doi:10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunst, A., F. Groenhof, and J. Mackenbach, 1994: The association between two wind chill indices and daily mortality variation in the Netherlands. Amer. J. Public Health, 84, 17381742, doi:10.2105/AJPH.84.11.1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lussenden, H. B., N. Umphlett, M. D. Shulski, and D. Ebert, 2014: Winter wind chill climatology for the high plains region. J. Service Climatol., 7, 121.

    • Search Google Scholar
    • Export Citation
  • Mekis, É., and R. Brown, 2010: Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada. Atmos.–Ocean, 48, 284293, doi:10.3137/AO1104.2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekis, É., L. A. Vincent, M. W. Shephard, and X. Zhang, 2015: Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953–2012. Atmos.–Ocean, 53, 383397, doi:10.1080/07055900.2015.1086970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. The National Academies Press, 186 pp., doi:10.17226/21852.

    • Crossref
    • Export Citation
  • Nixdorf-Miller, A., D. M. Hunsaker, and J. C. Hunsaker, 2006: Hypothermia and hyperthermia medicolegal investigation of morbidity and mortality from exposure to environmental temperature extremes. Arch. Pathol. Lab. Med., 130, 12971304, doi:10.1043/1543-2165(2006)130[1297:HAHMIO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NWS, 2007: Storm Data preparation. National Weather Service Instruction (NWSI) 10-1605, 110 pp., https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf.

  • Osczevski, R. J., 1995: The basis of wind chill. Arctic, 48, 372382, doi:10.14430/arctic1262.

  • Osczevski, R. J., 2000: Windward cooling: An overlooked factor in the calculation of wind chill. Bull. Amer. Meteor. Soc., 81, 29752978, doi:10.1175/1520-0477(2000)081<2975:WCAOFI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osczevski, R. J., and M. Bluestein, 2005: The new wind chill temperature equivalent chart. Bull. Amer. Meteor. Soc., 86, 14531458, doi:10.1175/BAMS-86-10-1453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, E. W., and J. P. Hennessey Jr., 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteor., 17, 390394, doi:10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi:10.1029/2008JD011416.

  • Rieck, T. C., and S. E. Binau, 2008: Wind chill climatology for the north-central United States. NOAA Tech. Service Publ. TSP-15, 11 pp., https://www.weather.gov/media/crh/publications/TSP/TSP-15.pdf.

  • Schwartz, R. M., and T. W. Schmidlin, 2002: Climatology of blizzards in the conterminous United States, 1959–2000. J. Climate, 15, 17651772, doi:10.1175/1520-0442(2002)015<1765:COBITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siple, P., and C. Passel, 1945: Measurements of dry atmospheric cooling in subfreezing temperatures. Proc. Amer. Philos. Soc., 89, 177199.

    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, doi:10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smithson, P., and H. Baldwin, 1978: Wind chill in lowland Britain. Weather, 33, 463476, doi:10.1002/j.1477-8696.1978.tb05329.x.

  • Soulé, P., V. Meentemeyer, and W. Bland, 1992: Temporal trends of mean and extreme wind chill in Georgia, 1961–1990. Southeast. Geogr., 32, 97112, doi:10.1353/sgo.1992.0009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and H. N. Shirer, 1992: Lake aggregate mesoscale disturbances. Part I: Linear analysis. J. Atmos. Sci., 49, 8096, doi:10.1175/1520-0469(1992)049<0080:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1971: Indices of wind chill of clothed persons. J. Appl. Meteor., 10, 674683, doi:10.1175/1520-0450(1971)010<0674:IOWOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, H., 2014: Wind chill affects cattle. American Angus Association, http://www.angusbeefbulletin.com/extra/2014/01jan14/0114hn_windchill.html.

  • Tikuisis, P., and R. Osczevski, 2002: Dynamic model of facial cooling. J. Appl. Meteor., 41, 12411246, doi:10.1175/1520-0450(2002)041<1241:DMOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tikuisis, P., and R. Osczevski, 2003: Facial cooling during cold air exposure. Bull. Amer. Meteor. Soc., 84, 927933, doi:10.1175/BAMS-84-7-927.

    • Search Google Scholar
    • Export Citation
  • Toros, H., A. Deniz, L. Şaylan, M. Şen, and O. Baloğlu, 2005: Spatial variability of chilling temperature in Turkey and its effect on human comfort. Meteor. Atmos. Phys., 88, 107118, doi:10.1007/s00703-003-0072-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J., A. Phillips, D. Portis, and W. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, doi:10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrenchuk, J., and T. Shirley, 2002. Effects of wind chill on the snow crab (Chionoecetes opilio). Crabs in Cold Water Regions: Biology, Management, and Economics, A. J. Paul et al., Eds., University of Alaska Sea Grant College Program, 81–96.

    • Crossref
    • Export Citation
  • Yan, Y., 2009: Spatial variability of wind chill temperatures in China. Int. J. Meteor., 34, 219228.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 880 515 35
PDF Downloads 386 85 9