An Atmospheric Hydraulic Jump in the Santa Barbara Channel

Timothy W. Juliano Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Timothy W. Juliano in
Current site
Google Scholar
PubMed
Close
,
Thomas R. Parish Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Thomas R. Parish in
Current site
Google Scholar
PubMed
Close
,
David A. Rahn Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Search for other papers by David A. Rahn in
Current site
Google Scholar
PubMed
Close
, and
David C. Leon Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David C. Leon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As part of the Precision Atmospheric Marine Boundary Layer Experiment, the University of Wyoming King Air sampled an atmospheric environment conducive to the formation of a hydraulic jump on 24 May 2012 off the coast of California. Strong, northwesterly flow rounded the Point Arguello–Point Conception complex and encountered the remnants of an eddy circulation in the Santa Barbara Channel. The aircraft flew an east–west vertical sawtooth pattern that captured a sharp thinning of the marine boundary layer and the downstream development of a hydraulic jump. In situ observations show a dramatic rise in isentropes and a coincident sudden decrease in wind speeds. Imagery from the Wyoming Cloud Lidar clearly depicts the jump feature via copolarization and depolarization returns. Estimations of MBL depth are used to calculate the upstream Froude number from hydraulic theory. Simulations using the Weather Research and Forecasting Model produced results in agreement with the observations. The innermost domain uses a 900-m horizontal grid spacing and encompasses the transition from supercritical to subcritical flow south of Point Conception. Upstream Froude number estimations from the model compare well to observations. A strongly divergent wind field, consistent with expansion fan dynamics, is present upwind of the hydraulic jump. The model accurately resolves details of the marine boundary layer collapse into the jump. Results from large-eddy simulations show a large increase in the turbulent kinetic energy field coincident with the hydraulic jump.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy W. Juliano, tjuliano@uwyo.edu

Abstract

As part of the Precision Atmospheric Marine Boundary Layer Experiment, the University of Wyoming King Air sampled an atmospheric environment conducive to the formation of a hydraulic jump on 24 May 2012 off the coast of California. Strong, northwesterly flow rounded the Point Arguello–Point Conception complex and encountered the remnants of an eddy circulation in the Santa Barbara Channel. The aircraft flew an east–west vertical sawtooth pattern that captured a sharp thinning of the marine boundary layer and the downstream development of a hydraulic jump. In situ observations show a dramatic rise in isentropes and a coincident sudden decrease in wind speeds. Imagery from the Wyoming Cloud Lidar clearly depicts the jump feature via copolarization and depolarization returns. Estimations of MBL depth are used to calculate the upstream Froude number from hydraulic theory. Simulations using the Weather Research and Forecasting Model produced results in agreement with the observations. The innermost domain uses a 900-m horizontal grid spacing and encompasses the transition from supercritical to subcritical flow south of Point Conception. Upstream Froude number estimations from the model compare well to observations. A strongly divergent wind field, consistent with expansion fan dynamics, is present upwind of the hydraulic jump. The model accurately resolves details of the marine boundary layer collapse into the jump. Results from large-eddy simulations show a large increase in the turbulent kinetic energy field coincident with the hydraulic jump.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy W. Juliano, tjuliano@uwyo.edu
Save
  • Armi, L., and G. J. Mayr, 2011: The descending stratified flow and internal hydraulic jump in the lee of the Sierras. J. Appl. Meteor. Climatol., 50, 19952011, https://doi.org/10.1175/JAMC-D-10-05005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, F. K., 1956: The theory of strong katabatic winds. Aust. J. Phys., 9, 373386, https://doi.org/10.1071/PH560373.

  • Beardsley, R. C., C. E. Dorman, C. A. Friehe, L. K. Rosenfeld, and C. D. Winant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J. Geophys. Res., 92, 14671488, https://doi.org/10.1029/JC092iC02p01467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellamy, J. C., 1945: The use of pressure altitude and altimeter corrections in meteorology. J. Meteor., 2, 178, https://doi.org/10.1175/1520-0469(1945)002<0001:TUOPAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1983: Analysis of a California Catalina eddy. Mon. Wea. Rev., 111, 16191633, https://doi.org/10.1175/1520-0493(1983)111<1619:AOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bridger, A. F. C., W. C. Brick, and P. F. Lester, 1993: The structure of the marine inversion layer off the central California coast: Mesoscale conditions. Mon. Wea. Rev., 121, 335351, https://doi.org/10.1175/1520-0493(1993)121<0335:TSOTMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1997: Mesoscale modeling of summertime refractive conditions in the Southern California Bight. J. Appl. Meteor., 36, 2231, https://doi.org/10.1175/1520-0450(1997)036<0022:MMOSRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y., J. R. Snider, and P. Wechsler, 2013: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution. Atmos. Meas. Tech., 6, 23492358, https://doi.org/10.5194/amt-6-2349-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanson, H., 2009: Current knowledge in hydraulic jumps and related phenomena: A survey of experimental results. Eur. J. Mech. Fluids, 28B, 191210, https://doi.org/10.1016/j.euromechflu.2008.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, Vol. 15, 40 pp.

  • Clarke, R. H., 1972: The morning glory: An atmospheric hydraulic jump. J. Appl. Meteor., 11, 304311, https://doi.org/10.1175/1520-0450(1972)011<0304:TMGAAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., L. Armi, and S. Vagle, 2006: Upstream internal hydraulic jumps. J. Phys. Oceanogr., 36, 753769, https://doi.org/10.1175/JPO2894.1.

  • Dawson, P. J., and J. D. Marwitz, 1982: Wave structures and turbulent features of the winter airflow in southern Wyoming. Interpretation of Windflow Characteristics from Eolian Landforms, R. W. Marrs and K. E. Kolm, Eds., GSA Special Papers, Vol. 192, Geological Society of America, 55–64, https://dx.doi.org/10.1130/SPE192-p55.

    • Crossref
    • Export Citation
  • Dorman, C. E., 1985: Evidence of Kelvin waves in California’s marine layer and related eddy generation. Mon. Wea. Rev., 113, 827839, https://doi.org/10.1175/1520-0493(1985)113<0827:EOKWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., D. P. Rogers, W. Nuss, and W. T. Thompson, 1999: Adjustment of the summer marine boundary layer around Point Sur, California. Mon. Wea. Rev., 127, 21432159, https://doi.org/10.1175/1520-0493(1999)127<2143:AOTSMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, and T. A. Lachlan-Cope, 2016: Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Quart. J. Roy. Meteor. Soc., 142, 618631, https://doi.org/10.1002/qj.2489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, W., P. Pritchard, and A. McDonald, 2010: Introduction to Fluid Mechanics. 8th ed. John Wiley & Sons, 754 pp.

  • Gohm, A., G. J. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteor. Soc., 134, 2146, https://doi.org/10.1002/qj.206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., and S. D. Burk, 2001: Summertime marine refractivity conditions along coastal California. J. Appl. Meteor., 40, 673687, https://doi.org/10.1175/1520-0450(2001)040<0673:SMRCAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, C. Dorman, and D. Rogers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688708, https://doi.org/10.1175/1520-0493(2001)129<0688:SFIWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., and C. E. Dorman, 2001: Marine atmospheric boundary divergence and clouds along California in June 1996. Mon. Wea. Rev., 129, 20402056, https://doi.org/10.1175/1520-0493(2001)129<2040:MABLDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lied, N. T., 1964: Stationary hydraulic jumps in a katabatic flow near Davis, Antarctica, 1961. Aust. Meteor. Mag., 47, 4051.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P. B., Jr., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor., 3, 439449, https://doi.org/10.1175/1520-0450(1964)003<0439:SOGVFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and P. P. Sullivan, 2015: Large-eddy simulation. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, F. Zhang, and J. Pyle, Eds., Vol. 4, Academic Press, 232–240.

    • Crossref
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., M. D. Burkhart, and A. R. Rodi, 2007: Determination of the horizontal pressure gradient force using global positioning system on board an instrumented aircraft. J. Atmos. Oceanic Technol., 24, 521528, https://doi.org/10.1175/JTECH1986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2013: Airborne observations of a Catalina eddy. Mon. Wea. Rev., 141, 33003313, https://doi.org/10.1175/MWR-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2014: Aircraft observations of the marine layer adjustment near Point Arguello, California. J. Appl. Meteor. Climatol., 53, 970989, https://doi.org/10.1175/JAMC-D-13-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2016a: Aircraft measurements and numerical simulations of an expansion fan off the California coast. J. Appl. Meteor. Climatol., 55, 20532062, https://doi.org/10.1175/JAMC-D-16-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2016b: Research aircraft determination of D-value cross sections. J. Atmos. Oceanic Technol., 33, 391396, https://doi.org/10.1175/JTECH-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and T. R. Parish, 2007: Diagnosis of the forcing and structure of the coastal jet near Cape Mendocino using in situ observations and numerical simulations. J. Appl. Meteor. Climatol., 46, 14551468, https://doi.org/10.1175/JAM2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2013: Airborne measurements of coastal jet transition around Point Conception, California. Mon. Wea. Rev., 141, 38273839, https://doi.org/10.1175/MWR-D-13-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2014: Coastal jet adjustment near Point Conception, California, with opposing wind in the bight. Mon. Wea. Rev., 142, 13441360, https://doi.org/10.1175/MWR-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2016: Observations of large wind shear above the marine boundary layer near Point Buchon, California. J. Atmos. Sci., 73, 30593077, https://doi.org/10.1175/JAS-D-15-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2017: Synthesis of observations from the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE). Mon. Wea. Rev., 145, 23252342, https://doi.org/10.1175/MWR-D-16-0373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 15711584, https://doi.org/10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., 2013: Daytime heat transfer processes over mountain terrain. J. Atmos. Sci., 70, 40414066, https://doi.org/10.1175/JAS-D-13-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Strauss, L., S. Serafin, S. Haimov, and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Roy. Meteor. Soc., 141, 32073225, https://doi.org/10.1002/qj.2604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implesmentation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2015: The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quart. J. Roy. Meteor. Soc., 141, 17801794, https://doi.org/10.1002/qj.2481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. R. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, https://doi.org/10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. French, G. Vali, and P. Wechsler, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemba, J., and C. A. Friehe, 1987: The marine boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92, 14891496, https://doi.org/10.1029/JC092iC02p01489.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1637 735 66
PDF Downloads 832 118 12