A Climatology of Weakly Forced and Pulse Thunderstorms in the Southeast United States

Paul W. Miller Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Paul W. Miller in
Current site
Google Scholar
PubMed
Close
and
Thomas L. Mote Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Thomas L. Mote in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Weakly forced thunderstorms (WFTs), convection forming in the absence of a synoptic forcing mechanism and its associated shear regime, are the dominant convective mode during the warm season in the southeast United States. This study uses 15 yr (2001–15) of warm-season (May–September) composite reflectivity images from 30 WSR-88D sites in the southeastern United States to detect WFTs and pulse thunderstorms, defined as WFTs associated with a severe weather event. Thunderstorms were identified as regions of contiguous reflectivities greater than or equal to 40 dBZ using connected neighborhoods labeling. Ward’s clustering was then performed upon the duration, size, strength, initiation time, and solidity of the approximately 1 900 000 thunderstorms. Of the 10 clusters of morphologically similar storms, five groups, containing 885 496 thunderstorms, were designated as WFTs. In line with previous work, WFT development mirrors landscape features, such as the Appalachian Mountains and Mississippi Delta. However, the large sample size also reveals more subtle nuances to the spatial distribution, such as decreases over river valleys and increases along the Atlantic fall line. The most active pulse thunderstorm region, the Blue Ridge Mountains, was displaced from the overall WFT maximum: the Florida Peninsula and Gulf Coast. Most pulse thunderstorms were associated with larger moisture values, particularly in the midlevels, which supported larger and longer-lasting WFT complexes. Synoptically, two distinct modes of variability yielded WFT-favorable environments: the intrusion of the Bermuda high from the east and the expansion of high pressure over the southern Great Plains from the west.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0005.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul W. Miller, paul.miller@uga.edu

Abstract

Weakly forced thunderstorms (WFTs), convection forming in the absence of a synoptic forcing mechanism and its associated shear regime, are the dominant convective mode during the warm season in the southeast United States. This study uses 15 yr (2001–15) of warm-season (May–September) composite reflectivity images from 30 WSR-88D sites in the southeastern United States to detect WFTs and pulse thunderstorms, defined as WFTs associated with a severe weather event. Thunderstorms were identified as regions of contiguous reflectivities greater than or equal to 40 dBZ using connected neighborhoods labeling. Ward’s clustering was then performed upon the duration, size, strength, initiation time, and solidity of the approximately 1 900 000 thunderstorms. Of the 10 clusters of morphologically similar storms, five groups, containing 885 496 thunderstorms, were designated as WFTs. In line with previous work, WFT development mirrors landscape features, such as the Appalachian Mountains and Mississippi Delta. However, the large sample size also reveals more subtle nuances to the spatial distribution, such as decreases over river valleys and increases along the Atlantic fall line. The most active pulse thunderstorm region, the Blue Ridge Mountains, was displaced from the overall WFT maximum: the Florida Peninsula and Gulf Coast. Most pulse thunderstorms were associated with larger moisture values, particularly in the midlevels, which supported larger and longer-lasting WFT complexes. Synoptically, two distinct modes of variability yielded WFT-favorable environments: the intrusion of the Bermuda high from the east and the expansion of high pressure over the southern Great Plains from the west.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0005.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul W. Miller, paul.miller@uga.edu
Save
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and C. W. Gilson, 2009: A reassessment of U.S. lightning mortality. Bull. Amer. Meteor. Soc., 90, 15011518, doi:10.1175/2009BAMS2765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the southeast United States. Climatic Change, 113, 481498, doi:10.1007/s10584-011-0324-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., 2011: Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmos. Res., 99, 175189, doi:10.1016/j.atmosres.2010.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and J. A. Stallins, 2005: Climatology of cloud-to-ground lightning in Georgia, USA, 1992–2003. Int. J. Climatol., 25, 19791996, doi:10.1002/joc.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., J. A. Stallins, and W. S. Ashley, 2012: Synoptic environments favourable for urban convection in Atlanta, Georgia. Int. J. Climatol., 32, 12871294, doi:10.1002/joc.2344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes: Observations and Dynamics. Springer, 456 pp.

    • Crossref
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, doi:10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., and C. D. Karstens, 2017: An investigation of local and national NWS warning outbreaks for severe convective events. J. Oper. Meteor., 5, 1425, doi:10.15191/nwajom.2017.0502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Springer, 619–647.

    • Crossref
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the high plains using an object-based approach. Wea. Forecasting, 29, 403418, doi:10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air-sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, doi:10.1175/JCLI-D-14-00477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2013: Influences of the Bermuda high and atmospheric moistening on changes in summer rainfall in the Atlanta, Georgia region, USA. Int. J. Climatol., 33, 160172, doi:10.1002/joc.3421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, doi:10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 7991, doi:10.1175/MWR3055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., V. Meunier, B. Puigdomènech Treserras, A. Cournoyer, and B. Nelson, 2017: On the climatological use of radar data mosaics: Possibilities and challenges. Bull. Amer. Meteor. Soc., 98, 21352148, doi:10.1175/BAMS-D-15-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, O. W. Frauenfeld, and A. D. Rapp, 2015: Synoptic conditions related to soil moisture-atmosphere interactions and unorganized convection in Oklahoma. J. Geophys. Res. Atmos., 120, 11 51911 535, doi:10.1002/2015JD023975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., P. L. Moore, and G. E. Fisher, 1967: Summer shower distribution over the Florida Peninsula as deduced from digitized radar data. J. Appl. Meteor., 6, 309316, doi:10.1175/1520-0450(1967)006<0309:SSDOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frye, J. D., and T. L. Mote, 2010: Convection initiation along soil moisture boundaries in the southern Great Plains. Mon. Wea. Rev., 138, 11401151, doi:10.1175/2009MWR2865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambill, L. D., and J. R. Mecikalski, 2011: A satellite-based summer convective cloud frequency analysis over the southeastern United States. J. Appl. Meteor. Climatol., 50, 17561769, doi:10.1175/2010JAMC2559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, H. M., and T. H. Vonder Haar, 1990: Cloud and convection frequencies over the southeast United States as related to small-scale geographic features. Mon. Wea. Rev., 118, 22152227, doi:10.1175/1520-0493(1990)118<2215:CACFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, X., and M. B. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, E. M., T. M. Smith, V. Lakshmanan, K. L. Elmore, D. W. Burgess, and G. J. Stumpf, 2008: Tornado and severe thunderstorm warning forecast skill and its relationship to storm type. 24th Int. Conf. Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 4A.3, http://ams.confex.com/ams/pdfpapers/132244.pdf.

  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, doi:10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallenbeck, C., 1922: The topographic thunderstorm. Mon. Wea. Rev., 50, 284287, doi:10.1175/1520-0493(1922)50<284:TTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, doi:10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, K. T., K. Dow, L. Carter, and J. Anderson, Eds., 2013: Climate of the Southeast United States: Variability, Change, Impacts, and Vulnerability. Island Press, 358 pp., https://www.sercc.com/ClimateoftheSoutheastUnitedStates.pdf.

    • Crossref
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, doi:10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., F. Fabry, and Q. Cazenave, 2016: The Mississippi Valley convection minimum on summer afternoons: Observations and numerical simulations. Mon. Wea. Rev., 144, 263272, doi:10.1175/MWR-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology. 1st ed. Amer. Meteor. Soc., 345 pp.

    • Crossref
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, doi:10.1175/2009JTECHA1257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and Coauthors, 2016: An observational study of convection initiation under quiescent conditions in the southeastern United States. 18th Symp. on Meteorological Observation and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 6A.3, https://ams.confex.com/ams/96Annual/webprogram/Paper282669.html.

  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, doi:10.1175/MWR-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. 1st ed. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Miller, P. W., and T. L. Mote, 2017: Standardizing the definition of a “pulse” thunderstorm. Bull. Amer. Meteor. Soc., 98, 905913, doi:10.1175/BAMS-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., A. Ellis, and S. Keighton, 2015a: Spatial distribution of lightning associated with low-shear thunderstorm environments in the central Appalachians region. Phys. Geogr., 36, 127141, doi:10.1080/02723646.2015.1011257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., A. Ellis, and S. Keighton, 2015b: A preliminary assessment of using spatiotemporal lightning patterns for a binary classification of thunderstorm mode. Wea. Forecasting, 30, 3856, doi:10.1175/WAF-D-14-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., A. W. Black, C. A. Williams, and J. A. Knox, 2016: Quantitative assessment of human wind speed overestimation. J. Appl. Meteor. Climatol., 55, 10091020, doi:10.1175/JAMC-D-15-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, doi:10.1029/2007GL031903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M. S., and C. E. Konrad, 2005: Spatial and temporal patterns of thunderstorm events that produce cloud-to-ground lightning in the interior southeastern United States. Mon. Wea. Rev., 133, 14171430, doi:10.1175/MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. Pal Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outlaw, D. E., and M. P. Murphy, 2000: A radar-based climatology of July convective initiation in Georgia and surrounding area. NWS Eastern Region Tech. Attachment 2000-04, 24 pp., http://www.weather.gov/media/erh/ta2000-04.pdf.

  • Patel, N., and R. W. Macemon, 2004: NEXRAD Open Radar Data Acquisition (ORDA) signal processing & signal path. 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.4, https://ams.confex.com/ams/pdfpapers/70926.pdf.

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115139, doi:10.1175/1520-0493(1974)102<0115:ATDNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. Nieto‐Ferreira, C. Zarzar, and B. Nelson, 2015: A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Quart. J. Roy. Meteor. Soc., 141, 19381956, doi:10.1002/qj.2500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senkbeil, J. C., M. E. Saunders, and B. Taylor, 2017: Changes in summer weather type frequency in eastern North America. Ann. Assoc. Amer. Geogr., 107, 117, doi:10.1080/24694452.2017.1295839.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res., 109, D20119, doi:10.1029/2004JD004811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, A. P., and S. Raman, 2016: Interaction between two distinct mesoscale circulations during summer in the coastal region of eastern USA. Bound.-Layer Meteor., 160, 113132, doi:10.1007/s10546-015-0125-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., and M. K. Cleaveland, 1992: Reconstruction and analysis of spring rainfall over the southeastern U.S. for the past 1000 years. Bull. Amer. Meteor. Soc., 73, 19471961, doi:10.1175/1520-0477(1992)073<1947:RAAOSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., J. Hart, and P. Janish, 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. 21st Conf. Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 11B.2, https://ams.confex.com/ams/pdfpapers/47494.pdf.

  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, doi:10.1016/S0169-8095(99)00011-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wissmeier, U., and R. Goler, 2009: A comparison of tropical and midlatitude thunderstorm evolution in response to wind shear. J. Atmos. Sci., 66, 23852401, doi:10.1175/2009JAS2963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, S. Wong, and B. H. Lambrigtsen, 2017: Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Sci. Adv., 3, e1600944, doi:10.1126/sciadv.1600944.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1864 1136 50
PDF Downloads 753 144 7