Analysis of Rain Types and Their Z–R Relationships at Different Locations in the High Andes of Southern Ecuador

Johanna Orellana-Alvear Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany, and Departamento de Recursos Hídricos y Ciencias Ambientales, and Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador

Search for other papers by Johanna Orellana-Alvear in
Current site
Google Scholar
PubMed
Close
,
Rolando Célleri Departamento de Recursos Hídricos y Ciencias Ambientales, and Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador

Search for other papers by Rolando Célleri in
Current site
Google Scholar
PubMed
Close
,
Rütger Rollenbeck Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Rütger Rollenbeck in
Current site
Google Scholar
PubMed
Close
, and
Jörg Bendix Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Jörg Bendix in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Information on the spatiotemporal rainfall occurrence, its microphysical characteristics, and its reflectivity–rainfall (ZR) relations required to provide rainfall mapping based on rain radar data is limited for tropical high mountains. Therefore, this study aims to analyze rainfall types in the Andes cordillera to derive different rain-type ZR relations using disdrometer observations at three study sites representative for different geographic positions and elevations (2610, 3626, and 3773 m MSL). Rain categorization based on mean drop volume diameter (Dm) thresholds [0.1 < Dm (mm) ≤ 0.5; 0.5 < Dm (mm) ≤ 1.0; 1.0 < Dm (mm) ≤ 2.0] was performed using drop size distribution data at a 5-min time step over an approximate 2-yr period at each location. The findings are as follows: (i) Rain observations characterized by higher (lower) Dm and rain rates are more frequent at the lower (higher) site. (ii) Because of its geographic position, very light rain (drizzle) is more common at higher altitudes with longer-duration events, whereas rainfall is more convective at the lower range. (iii) The specific spatial exposition regarding cloud and rain formation seems to play an important role for derivation of the local ZR relationship. (iv) Low A coefficients (≤60) for the first rain type resemble typical characteristics of orographic precipitation. (v) Greater values of A (lowest and highest stations for Dm > 1.0 mm) are attributed to transitional rainfall as found in other studies. (vi) Rain-type ZR relations show a better adjustment in comparison with site-specific ZR relationships. This study is the first contribution of ZR relations for tropical rainfall in the high Andes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johanna Orellana-Alvear, johanna.orellanaa@gmail.com

Abstract

Information on the spatiotemporal rainfall occurrence, its microphysical characteristics, and its reflectivity–rainfall (ZR) relations required to provide rainfall mapping based on rain radar data is limited for tropical high mountains. Therefore, this study aims to analyze rainfall types in the Andes cordillera to derive different rain-type ZR relations using disdrometer observations at three study sites representative for different geographic positions and elevations (2610, 3626, and 3773 m MSL). Rain categorization based on mean drop volume diameter (Dm) thresholds [0.1 < Dm (mm) ≤ 0.5; 0.5 < Dm (mm) ≤ 1.0; 1.0 < Dm (mm) ≤ 2.0] was performed using drop size distribution data at a 5-min time step over an approximate 2-yr period at each location. The findings are as follows: (i) Rain observations characterized by higher (lower) Dm and rain rates are more frequent at the lower (higher) site. (ii) Because of its geographic position, very light rain (drizzle) is more common at higher altitudes with longer-duration events, whereas rainfall is more convective at the lower range. (iii) The specific spatial exposition regarding cloud and rain formation seems to play an important role for derivation of the local ZR relationship. (iv) Low A coefficients (≤60) for the first rain type resemble typical characteristics of orographic precipitation. (v) Greater values of A (lowest and highest stations for Dm > 1.0 mm) are attributed to transitional rainfall as found in other studies. (vi) Rain-type ZR relations show a better adjustment in comparison with site-specific ZR relationships. This study is the first contribution of ZR relations for tropical rainfall in the high Andes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johanna Orellana-Alvear, johanna.orellanaa@gmail.com
Save
  • Alfieri, L., P. Claps, and F. Laio, 2010: Time-dependent Z-R relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Syst. Sci., 203, 149158, https://www.nat-hazards-earth-syst-sci.net/10/149/2010/nhess-10-149-2010.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res., 105, 22592267, doi:10.1029/1999JD901009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamba, B., A. D. Ochou, E.-P. Zahiri, and M. Kacou, 2014: Consistency in Z-R relationship variability regardless precipitating systems, climatic zones observed from two types of disdrometer. Atmos. Climate Sci., 4, 941955, doi:10.4236/acs.2014.45083.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., R. Rollenbeck, D. Göttlicher, and J. Cermak, 2006: Cloud occurrence and cloud properties in Ecuador. Climate Res., 30, 133147, https://doi.org/10.3354/cr030133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., and Coauthors, 2017: RadarNet-Sur first weather radar network in tropical high mountains. Bull. Amer. Meteor. Soc., 98, 12351254, https://doi.org/10.1175/BAMS-D-15-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1953: Raindrop size-distribution in Hawaiian rains. J. Meteor., 10, 457473, doi:10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buytaert, W., R. Célleri, P. Willems, B. D. Bièvre, and G. Wyseure, 2006: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol., 329, 413421, doi:10.1016/j.jhydrol.2006.02.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., F. Porcù, and F. Prodi, 2008: Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv. Geosci., 16, 1117, doi:10.5194/adgeo-16-11-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrillo-Rojas, G., B. Silva, M. Córdova, R. Célleri, and J. Bendix, 2016: Dynamic mapping of evapotranspiration using an energy balance-based model over an Andean páramo catchment of southern Ecuador. Remote Sens., 8, 160, doi:10.3390/rs8020160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Célleri, R., and J. Feyen, 2009: The hydrology of tropical Andean ecosystems: Importance, knowledge status, and perspectives. Mt. Res. Dev., 29, 350355, doi:10.1659/mrd.00007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Célleri, R., P. Willems, W. Buytaert, and J. Feyen, 2007: Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol. Processes, 21, 33163327, doi:10.1002/hyp.6575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerro, C., B. Codina, J. Bech, and J. Lorente, 1997: Modeling raindrop size distribution and Z(R) relations in the western Mediterranean area. J. Appl. Meteor., 36, 14701479, doi:10.1175/1520-0450(1997)036<1470:MRSDAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Wang, and D. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteor. Climatol., 55, 621634, doi:10.1175/JAMC-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Córdova, M., G. Carrillo-Rojas, P. Crespo, B. Wilcox, and R. Célleri, 2015: Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt. Res. Dev., 35, 230239, doi:10.1659/MRD-JOURNAL-D-14-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Córdova, M., R. Célleri, C. J. Shellito, J. Orellana-Alvear, A. Abril, and G. Carrillo-Rojas, 2016: Near-surface air temperature lapse rate over complex terrain in the southern Ecuadorian Andes: Implications for temperature mapping. Arct. Antarct. Alp. Res., 48, 678684, doi:10.1657/AAAR0015-077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, W. F. Krajewski, M. L. Baeck, and B.-C. Seo, 2015: NEXRAD NWS polarimetric precipitation product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, doi:10.1175/JHM-D-14-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Bièvre, B., A. Alvarado, L. Timbe, R. Célleri, and J. Feyen, 2003: Night irrigation reduction for water saving in medium-sized systems. J. Irrig. Drain. Eng., 129, 108116, doi:10.1061/(ASCE)0733-9437(2003)129:2(108).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delrieu, G., S. Caoudal, and J. D. Creutin, 1997: Feasibility of using mountain return for the correction of ground-based X-band weather radar data. J. Atmos. Oceanic Technol., 14, 368385, doi:10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerley, D., 2008: Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrol. Processes, 22, 44154435, doi:10.1002/hyp.7045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza Villar, J. C., and Coauthors, 2009: Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29, 15741594, doi:10.1002/joc.1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Raga, M., and Coauthors, 2010: The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmos. Res., 96, 225240, https://doi.org/10.1016/j.atmosres.2009.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frasson, R. P. M., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101, 237255, doi:10.1016/j.atmosres.2011.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, doi:10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstede, R. G. M., K. J. M. Dickinson, A. F. Mark, and E. Narváez, 2014: A broad transition from cloud forest to páramo characterizes an undisturbed treeline in Parque Nacional Llanganates, Ecuador. Arct. Antarct. Alp. Res., 46, 975986, doi:10.1657/1938-4246-46.4.975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horvath, H., 2009: Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. J. Quant. Spectrosc. Radiat. Transfer, 110, 787799, doi:10.1016/j.jqsrt.2009.02.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: On the variability of drop size distributions over areas. J. Atmos. Sci., 72, 13861397, doi:10.1175/JAS-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, L. S., Y. H. Lee, J. X. Yeo, and J. T. Ong, 2011: Tropical rain classification and estimation of rain from Z-R (reflectivity-rain rate) relationships. Prog. Electromagn. Res., 32B, 107127, doi:10.2528/PIERB11040402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., and J. B. Teves, 2015: Identifying individual rain events with a dense disdrometer network. Adv. Meteor., 2015, 582782, doi:10.1155/2015/582782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., C. Kummerow, and W. Berg, 2004: Toward a global map of raindrop size distributions. Part I: Rain-type classification and its implications for validating global rainfall products. J. Hydrometeor., 5, 831849, https://doi.org/10.1175/1525-7541(2004)005<0831:TAGMOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G., and I. Zawadzki, 2003: Sequential Intensity Filtering Technique (SIFT): Filtering out noise to highlight the physical variability of drop size distributions. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 1A.7, https://ams.confex.com/ams/pdfpapers/63923.pdf.

  • Llasat, M.-C., 2001: An objective classification of rainfall events on the basis of their convective features: Application to rainfall intensity in the northeast of Spain. Int. J. Climatol., 21, 13851400, doi:10.1002/joc.692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo Conti, F., A. Francipane, D. Pumo, and L. V. Noto, 2015: Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications. J. Hydrol., 531, 508522, doi:10.1016/j.jhydrol.2015.10.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., M. Kunz, and W. Schmid, 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379387, doi:10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, M., S.-G. Park, and V. Bringi, 2005: Effect of natural variations in rain drop size distributions on rain rate estimators of 3 cm wavelength polarimetric radar. J. Meteor. Soc. Japan, 83, 871893, doi:10.2151/jmsj.83.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mätzler, C., 2002: MATLAB functions for Mie scattering and absorption. University of Bern Tech. Rep. 2002–08, 18 pp., http://arrc.ou.edu/~rockee/NRA_2007_website/Mie-scattering-Matlab.pdf.

  • Muñoz, P., R. Célleri, and J. Feyen, 2016: Effect of the resolution of tipping-bucket rain gauge and calculation method on rainfall intensities in an Andean mountain gradient. Water, 8, 534, doi:10.3390/w8110534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nzeukou, A., and H. Sauvageot, 2004: Raindrop size distribution and radar parameters at Cape Verde. J. Appl. Meteor., 43, 90105, doi:10.1175/1520-0450(2004)043<0090:RSDARP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochou, A. D., E.-P. Zahiri, B. Bamba, and M. Koffi, 2011: Understanding the variability of ZR relationships caused by natural variations in raindrop size distributions (DSD): Implication of drop size and number. Atmos. Climate Sci., 1, 147164, doi:10.4236/acs.2011.13017.

    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., 2013: Análisis de la estructura de la lluvia del páramo (Analysis of the rainfall structure of the páramo). Tesis previa a la obtención del título de Ingeniero Civil, Universidad de Cuenca, 100 pp., http://dspace.ucuenca.edu.ec/bitstream/123456789/519/1/TESIS.pdf.

  • Padrón, R. S., B. P. Wilcox, P. Crespo, and R. Célleri, 2015: Rainfall in the Andean páramo: New insights from high-resolution monitoring in southern Ecuador. J. Hydrometeor., 16, 985996, doi:10.1175/JHM-D-14-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., G. Delrieu, G.-M. Saulnier, H. Andrieu, B. Vignal, and J.-D. Creutin, 2002: Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardèche catchment (France). J. Hydrometeor., 3, 539555, doi:10.1175/1525-7541(2002)003<0539:HVOWRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., and Coauthors, 2005: The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon. Wea. Rev., 133, 228240, doi:10.1175/MWR-2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulwarty, R. S., R. G. Barry, C. M. Hurst, K. Sellinger, and L. F. Mogollon, 1998: Precipitation in the Venezuelan Andes in the context of regional climate. Meteor. Atmos. Phys., 67, 217237, doi:10.1007/BF01277512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramli, S., and W. Tahir, 2011: Radar hydrology: New Z/R relationships for quantitative precipitation estimation in Klang River Basin, Malaysia. Int. J. Environ. Sci. Dev., 2, 223227, doi:10.7763/IJESD.2011.V2.128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, K. Mohan, and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res., 106, 17 66917 711, https://doi.org/10.1029/2000JD900836.

    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., and J. Bendix, 2006: Experimental calibration of a cost-effective X-band weather radar for climate ecological studies in southern Ecuador. Atmos. Res., 79, 296316, doi:10.1016/j.atmosres.2005.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., and J. Bendix, 2011: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res., 99, 277289, doi:10.1016/j.atmosres.2010.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., J. Bendix, and P. Fabian, 2011: Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of south Ecuador. Hydrol. Processes, 25, 344352, doi:10.1002/hyp.7799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., D. B. Wolff, and D. Atlas, 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32, 5072, doi:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, B., and Coauthors, 2010: Radar/rain-gauge comparisons on squall lines in Niamey, Niger for the AMMA. Quart. J. Roy. Meteor. Soc., 136, 289303, doi:10.1002/qj.548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, T., S. Das, and A. Maitra, 2015: Assessment of different raindrop size measuring techniques: Inter-comparison of Doppler radar, impact and optical disdrometer. Atmos. Res., 160, 1527, doi:10.1016/j.atmosres.2015.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savina, M., 2011: The use of a cost-effective X-band weather radar in Alpine region. Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 171 pp., https://doi.org/10.3929/ethz-a-007141834.

    • Crossref
    • Export Citation
  • Scheel, M. L. M., M. Rohrer, C. Huggel, D. Santos Villar, E. Silvestre, and G. J. Huffman, 2011: Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci., 15, 26492663, doi:10.5194/hess-15-2649-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Jaiswal, R., S. Uma, and A. Santhakumaran, 2009: Study of Z-R relationship over Gadanki for different rainfall rates. Indian J. Radio Space Phys., 38, 159164, http://nopr.niscair.res.in/bitstream/123456789/4533/1/IJRSP%2038%283%29%20159-164.pdf.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity-rain rate relationships. J. Atmos. Sci., 61, 11141131, doi:10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tenório, R. S., M. C. da Silva Moraes, and H. Sauvageot, 2012: Raindrop size distribution and radar parameters in coastal tropical rain systems of northeastern Brazil. J. Appl. Meteor. Climatol., 51, 19601970, https://doi.org/10.1175/JAMC-D-11-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thies Clima, 2007: Instructions for use: Laser Precipitation Monitor 5.4110.xx.x00 V2.2xSTD. Thies Clima Tech. Rep., 58 pp.

  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477, doi:10.1175/1520-0426(2003)020<1460:RGADMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. Hartmann, A. Battaglia, K. S. Gage, W. L. Clark, and C. R. Williams, 2009: A field study of reflectivity and Z–R relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol., 26, 11201134, doi:10.1175/2008JTECHA1163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci., 5, 615628, doi:10.5194/hess-5-615-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, doi:10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Beek, C. Z., H. Leijnse, J. N. M. Stricker, R. Uijlenhoet, and H. W. J. Russchenberg, 2009: Performance of high-resolution X-band radar for rainfall measurement in the Netherlands. Hydrol. Earth Syst. Sci., 6, 60356085, doi:10.5194/hessd-6-6035-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Beek, C. Z., H. Leijnse, P. Hazenberg, and R. Uijlenhoet, 2016: Close-range radar rainfall estimation and error analysis. Atmos. Meas. Tech., 9, 38373850, doi:10.5194/amt-9-3837-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Dover Publications, 446 pp.

    • Crossref
    • Export Citation
  • Varikoden, H., B. Preethi, A. A. Samah, and C. A. Babu, 2011: Seasonal variation of rainfall characteristics in different intensity classes over peninsular Malaysia. J. Hydrol., 404, 99108, doi:10.1016/j.jhydrol.2011.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13, 25202535, doi:10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., and D. Atlas, 1963: Radar reflectivity and attenuation of rain. J. Appl. Meteor., 2, 276280, doi:10.1175/1520-0450(1963)002<0276:RRAAOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wohl, E., and Coauthors, 2012: The hydrology of the humid tropics. Nat. Climate Change, 2, 655662, https://doi.org/10.1038/nclimate1556.

  • Yoon, S.-S., T. A. Phuong, and D.-H. Bae, 2012: Quantitative comparison of the spatial distribution of radar and gauge rainfall data. J. Hydrometeor., 13, 19391953, doi:10.1175/JHM-D-11-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3162 1563 44
PDF Downloads 1299 180 7